Product Description
Product Description
Tensioner bearing is a belt tensioning device used in the automobile transmission system. Tensioner bearings mainly composed of a fixed shell, a tensioning arm, a wheel body, a torsion spring, a rolling bearing and a spring sleeve. It can automatically adjust the tension according to the different tightness of the belt. The tight force makes the transmission system stable, safe and reliable.
Product Parameters
OEM NO | SKF NO | BREDA | INA NO |
23357-32040 | VKM75113 | CR5071 | F-124078 |
MD | |||
MD129033 | VKM75130 | CR5084 | |
24450-33571 | VKM75144 | CR5067 | |
23357-42571 | VKM75601 | CR5076 | F-124070 |
24317-42571 | VKM75612 | CR5077 | F-124052 |
24317-42571 | VKM75612 | CR5077 | F-124052 |
MD352473 | VKM75613 | CR5171 | |
MD329976 | VKM75615 | CR5172 | |
MD320174 | VKM75616 | CR5137 | |
24410-57150 | VKM75621 | CR5225 | |
MD356509 | VKM75625 | CR5206 | |
12810-71C02 | VKM76 | ||
12810-81401- | |||
12810-86501 | VKM76203 | CR5101 | |
13505-87702- | |||
8-94472-349- 1 |
VKM79.1 | ||
13503-62030 | VKM81 | ||
13503-54571 | VKM81 | ||
13503-54030 | VKM81 | ||
13503-10571 | VKM81201 | CR5026 | F-124073 |
13503-1571 | VKM81203 | CR5571 | F-124089 |
13503-11040 | VKM814 | ||
13074-05E | |||
13077-V7202 | VKM825 | ||
FS01-12-730A | VKM84 | ||
FE1H-12-730A | VKM846 | ||
OK972-12-730 | VKM84601 | CR5055 | |
24810-33571 | VKM85 | ||
9281571212 | CR3395 | F-22 | |
57119243L | VKM11107 | CR3467 | F-55571 |
1112571119 | VKM23063S | CR1458 | F-220122 |
CR3416 | |||
7784613 | CR1440P | F-123753 | |
CR1452P | |||
601257170 | CR1477 | F-220124 | |
CR1478 | |||
CR1480 | |||
CR1480P | |||
715713 | CR1481 | ||
CR1484 | |||
90324097 | CR1486 | F-225717 | |
CR1497 | |||
CR1498 | |||
CR1499 | |||
7301662 | CR1647 | F-88019.2 | |
11281731220 | CR3571 | F-225569 | |
11281731838 | CR3571 | F-225633 | |
XS4Q6B217AD | CR3102 | F-143 | |
6682571419 | CR3118 | ||
668257171 | CR3119 | ||
9635638380 | CR3218 | F-123183.18 | |
46547564 | CR3270 | ||
5 | |||
96036288 | CR3276 | F-120676 | |
962 | |||
CR3296 | F-123788 | ||
6682571219 | CR3324 | ||
PQR10571 | CR3328 | F-14.1 | |
ERR1972 | CR3333 | F-14 0571 | |
112875 | |||
LHV1.1 | |||
OK88R-12-740 | CR5152 | F-233571 | |
OK054-12-7 | |||
6019810571 | CR 3064 | ||
4777394 | CR3433 | FC68768.3 | |
4796016 | |||
471569AB | |||
24410-2Y.1 | |||
5636425 | VKM25212 | CR1801 | F-218108.4 |
924 | |||
9128739 | VKM25152 | CR1899 | F-218741.1 |
636416 | VKM25213 | CR1803 | F-224966 |
Packaging & Shipping
Our Advantages
1. We have over 10 years’ experience.
2. OEM or Non-Standard Bearings: Any requirement for Non-standard bearings is easily fulfilled by us due to our vast knowledge and links in the industry.
3. After Sales Service and Technical Assistance: Our company provides after-sales service and technical assistance as per the customer’s requirements and needs.
4. Quick Delivery: Our company provides just-in-time delivery with our streamlined supply chain.
5.We attend promptly to any customer questions. We believe that if our customers are satisfied then it proves our worth. Our customers are always given quick support.
Please contact us immediately if you have any questions.
Related Products
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Warranty: | 12 Months |
Type: | Tensioner Bearing |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are there specific considerations for choosing belt tensioners in applications with varying loads or environmental conditions?
When selecting belt tensioners for applications with varying loads or environmental conditions, there are several specific considerations to keep in mind. The performance and longevity of belt tensioners can be influenced by the dynamic nature of the loads and the environmental factors they are exposed to. Here’s a detailed explanation of the considerations for choosing belt tensioners in such applications:
- Load Capacity:
- Adjustability:
- Temperature Range:
- Corrosion Resistance:
- Contamination Protection:
- Shock and Vibration Resistance:
- Maintenance and Serviceability:
In applications with varying loads, it is crucial to select belt tensioners with an appropriate load capacity. The tensioner should be capable of exerting sufficient force to maintain the desired tension in the belt, even under the highest anticipated load conditions. It is important to consider the maximum peak loads, as well as any transient or shock loads that may occur during operation. Choosing a tensioner with an adequate load capacity ensures reliable and consistent tensioning performance, preventing issues like belt slippage or excessive wear.
In applications where the loads vary significantly, having an adjustable belt tensioner can be beneficial. An adjustable tensioner allows for fine-tuning of the tensioning force to accommodate different load conditions. By adjusting the tensioner’s position or tension setting, the tension can be optimized for various load levels, ensuring proper belt engagement and tension throughout the operating range. This flexibility helps maintain optimal performance and reduces the risk of belt-related problems.
Environmental conditions, particularly temperature variations, can affect the performance and durability of belt tensioners. In applications with extreme temperature ranges, it is important to choose tensioners that can withstand the anticipated temperatures without compromising their functionality. High-temperature or low-temperature resistant materials and lubricants may be required to ensure that the tensioner operates reliably and maintains its mechanical properties within the specified temperature range.
Applications exposed to harsh environments, such as those with high humidity, chemicals, or saltwater, require belt tensioners with excellent corrosion resistance. Corrosion-resistant materials, such as stainless steel or specialized coatings, should be considered to protect the tensioner from corrosion and degradation. This helps maintain the tensioner’s performance and extends its service life, even in challenging environmental conditions.
In environments where the belt tensioner may be exposed to contaminants like dust, dirt, or debris, it is important to choose tensioners with effective contamination protection features. Seals, shields, or covers can be incorporated into the tensioner design to prevent the ingress of contaminants that could compromise the tensioner’s functionality or cause premature wear. Proper contamination protection helps ensure reliable performance and reduces the need for frequent maintenance or replacement.
Applications with significant shock or vibration levels require belt tensioners that can withstand these dynamic forces. Tensioners with robust construction, reinforced components, or dampening features can help absorb shocks and vibrations, reducing the risk of tensioner failure or damage. It is important to consider the expected shock and vibration levels in the application and select tensioners designed to handle such conditions.
Applications with varying loads or challenging environmental conditions may require more frequent inspection and maintenance of the belt tensioners. When choosing tensioners, consider factors such as accessibility for inspection, ease of adjustment or replacement, and the availability of spare parts. Tensioners that are designed for easy maintenance and serviceability can help minimize downtime and ensure the continued performance of the belt-driven system.
In summary, choosing the right belt tensioners for applications with varying loads or environmental conditions requires considering factors such as load capacity, adjustability, temperature range, corrosion resistance, contamination protection, shock and vibration resistance, and maintenance/serviceability. By carefully evaluating these considerations and selecting tensioners that meet the specific requirements of the application, optimal performance, and longevity of the belt-driven system can be ensured.
How do innovations and advancements in belt tensioner technology impact their use?
Innovations and advancements in belt tensioner technology have a significant impact on their use, enhancing performance, reliability, and versatility. These advancements introduce new features, improve functionality, and address specific challenges associated with belt-driven systems. Here’s a detailed explanation of how innovations and advancements in belt tensioner technology impact their use:
- Improved Tensioning Mechanisms:
- Enhanced Durability:
- Increased Compatibility:
- Noise and Vibration Reduction:
- Advanced Monitoring and Diagnostic Capabilities:
- Integration with System Controls:
New tensioning mechanisms and designs have been developed to provide more precise and efficient tension control. Innovations such as automatic tensioners or self-adjusting tensioners utilize advanced mechanisms that can continuously monitor and adjust the tension in real-time. This improves the overall performance and reliability of belt-driven systems, as the tension can be accurately maintained even under varying loads and operating conditions.
Advancements in materials and manufacturing techniques have contributed to the development of more durable belt tensioners. High-strength alloys, advanced polymers, and specialized coatings are used to increase the resistance to wear, corrosion, and fatigue. These improvements extend the service life of belt tensioners, reducing the frequency of maintenance and replacement and improving the overall reliability of belt-driven systems.
Innovations in belt tensioner technology have led to increased compatibility with a wide range of belt drive systems. Manufacturers have developed adjustable tensioners that can accommodate different belt widths, profiles, and types. This versatility allows for easier integration and replacement of tensioners in various industrial or automotive applications, reducing the need for custom solutions and simplifying maintenance and repairs.
New technologies and designs have been introduced to minimize noise and vibration generated by belt tensioners. Innovative damping materials, improved bearing systems, and optimized geometries help reduce noise and vibration levels, resulting in quieter and smoother operation. This is particularly beneficial in applications where noise reduction and operator comfort are essential.
Advancements in belt tensioner technology have facilitated the integration of monitoring and diagnostic capabilities. Smart tensioners equipped with sensors and connectivity features can provide real-time data on tension levels, temperature, and other operating parameters. This enables predictive maintenance, early fault detection, and optimized performance. By leveraging data-driven insights, operators can make informed decisions, improve system efficiency, and prevent unexpected failures.
Innovative belt tensioner technologies can be integrated with system controls and automation platforms. This allows for seamless integration into larger control systems, enabling automated tension adjustments, synchronization with other components, and coordinated operation. The integration of belt tensioners with system controls enhances system performance, efficiency, and overall productivity.
In summary, innovations and advancements in belt tensioner technology have a significant impact on their use. These advancements improve tensioning mechanisms, enhance durability, increase compatibility, reduce noise and vibration, enable advanced monitoring and diagnostics, and facilitate integration with system controls. By incorporating these innovations, belt tensioners offer improved performance, reliability, and versatility, leading to enhanced efficiency and reduced maintenance requirements in various industrial and automotive applications.
Can you describe the various types of belt tensioners, such as automatic or manual tensioners?
There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:
- Manual Belt Tensioners:
- Automatic Belt Tensioners:
- Hydraulic Belt Tensioners:
- Eccentric Belt Tensioners:
- Idler Pulley Tensioners:
Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.
Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.
Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.
Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.
Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.
In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.
Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.
editor by CX 2024-04-12