Product Description
CZPT belt tensioner 5333477 3937553 for engine 6BTA, with list of CZPT belt tensioners, as below:
Engine | Description | Part # | Part # | Part # | Part # | Part # |
B3.9 | belt tensioner | 3922900 | 3914854 | 3936210 | 3936198 | 3936207 |
B3.9 | belt tensioner | 3936204 | 3937555 | 3936197 | 3936206 | 3936201 |
B5.9 | belt tensioner | 3937553 | 3934818 | 3914086 | 3978571 | 3936202 |
B5.9 | belt tensioner | 3936203 | 3924026 | 3978571 | 4994573 | 3976832 |
B5.9 | belt tensioner | 3928748 | 3934824 | 3936208 | 3973825 | 3934814 |
B5.9 | belt tensioner | 5333478 | 3917440 | 3934819 | 3936205 | 5333481 |
B5.9 | belt tensioner | 3918944 | 3934817 | 3973822 | 3921524 | 3934816 |
B5.9 | belt tensioner | 3976833 | 3957433 | 393 0571 | 3973824 | 5333486 |
B5.9 | belt tensioner | 3922549 | 3925625 | 3934820 | ||
C8.3 | belt tensioner | 3937556 | 4898548 | 4987964 | 3936212 | 3934830 |
C8.3 | belt tensioner | 3969564 | 3959042 | 3991495 | 3936213 | 3976831 |
C8.3 | belt tensioner | 3933725 | 3934831 | 3973823 | 3917485 | 5333477 |
C8.3 | belt tensioner | 3934822 | 3973827 | 5333480 | 3967190 | 3281583 |
C8.3 | belt tensioner | 3934821 | 3945527 | 5259571 | ||
6ISBE | belt tensioner | 3947574 | 4891116 | 4936640 | 4987964 | 3979316 |
QSB | belt tensioner | 3976834 | 3957434 | |||
ISF2.8 | belt tensioner | 5262500 | ||||
ISF3.8 | belt tensioner | 5267127 | 5287571 | 4980639 | 5287571 | |
K19 | belt tensioner | 3009639 | ||||
M11 | belt tensioner | 3457141 | 3400885 | 3157189 | 3062602 |
origins from Cummins, who produces most CZPT engine series in China, including:
SN | Models |
1 | 4BT3.9, 6BT5.9, 4ISBE4.5, 6ISBE6.7, QSB4.5, QSB6.7, ISB |
2 | 6CT8.3, L8.9, L9.3, L9.5, ISLe8.9, QSL |
3 | MTA11, QSM, ISME |
4 | ISF2.8, ISF3.8, QSF2.8, QSF3.8 |
5 | ISZ13, QSZ13, ISG |
6 | NT855 |
7 | KT19, KT38, KT50, QSK19, QSK38, etc |
for different applications, such as:
SN | Applications |
1 | diesel generator set |
2 | water pump set, fire pump set |
3 | construction and engineering machinery (crane, excavator, bulldozer, loader, etc) |
4 | Automobile (bus, coach, shuttle, etc) |
5 | marine main propulsion, marine auxiliary generator set |
And besides complete engines, we also export a lot of engine parts parts, including:
SN | Part Descriptions |
1 | cylinder head, cylinder block, cylinder liner |
2 | piston, piston ring, conrod |
3 | main bearing, conrod bearing, thrust bearing |
4 | fuel injector, fuel injection pump, common rail |
5 | oil pan gasket, cylinder head gasket |
6 | overhaul gasket kit, upper gasket kit, lower gasket kit |
7 | oil pan |
8 | fuel transfer pump, water pump, oil pump, vacuum pump, power steering pump |
9 | oil filter, fuel filter, fuel water separator, air filter, Etc |
Beyond Cummins, we also deal with many other brands of engines and gearboxes, etc, including:
SN | Brands |
1 | Deutz, MWM |
2 | CAT |
3 | Detroit |
4 | Weichai |
5 | Yuchai |
6 | SDEC |
7 | Advance |
8 | Fada |
9 | Jinbei, Brilliance |
10 | Yuejin |
11 | WEICHAI |
FAQ:
Question: What is the price ?
Answer: Our prices are determined by various factors, including: Brand, Model, Power, Quantity, Price Term (FOB, CIF, CPT, FCA, etc), Certificates, etc.
Question: What is the MOQ ?
Answer: for complete engine, 1 set; for engine parts, 1 engine set;
Question: Are samples available ?
Answer: Sample order is acceptable, but with higher unit price.
For regular partners, if necessary, free samples are available.
Question: How long is the production cycle (lead time) ?
Answer: for engine parts, we usually have enough stock; for engines, usually around 10-20 days; for stock engine, usually 1 week.
Question: How long is the shipment?
Answer: if by Express, usually 3-4 working days; if by air, usually 3-5 working days; if by sea, 3-7 days to Southeast Asia, 15-20 days to Middle East, South Asia and Australia, 20-25 days to Europe, USA and Africa, 30-35 days to Latin America and other regions.
Question: What are your payment methods ?
Answer: we accept T/T (bank wire transfer), L/C, Western Union, Money Gram, Sigue, Secured Trade through Made-in-China, etc.
Question: Do you supply any other brand ?
Answer: we entered stock engine industry since 2016, mainly focusing in engines in stock, never used, still under good condition, made in US/UK/Germany/Japan/Korea/China, etc. Sometimes we have stocks of other brands than our normal list of brands. Thus, any inquiry is warmly welcomed and we will always do best to support customers. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CCC, ISO9001, TS16949 |
---|---|
Engine: | 6BT, 6CT |
Part #1: | 3937553, 3917485, 3914086, 3922900 |
Part #2: | 3934818, 3936201, 5333477, 3918944 |
Part #3: | 3934817, 3936202, 3973822, 3978022 |
Part #4: | 3933725, 3934831, 3936203, 3973823 |
Samples: |
US$ 46.6/Piece
1 Piece(Min.Order) | |
---|
Can you explain the benefits of using belt tensioners in preventing slippage and optimizing power transmission in machinery?
Using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. Belt tensioners play a critical role in maintaining proper tension in the belt, ensuring efficient power transfer, and preventing slippage that can lead to decreased performance and premature wear. Here’s a detailed explanation of the benefits:
- Slippage Prevention:
- Efficient Power Transmission:
- Load Handling:
- Reduced Wear and Maintenance:
- System Reliability:
- Noise and Vibration Reduction:
Belt tensioners are primarily designed to prevent slippage between the belt and the pulleys. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency. Belt tensioners apply sufficient force to keep the belt tightly engaged with the pulleys, minimizing the risk of slippage. By maintaining the appropriate tension, tensioners ensure a reliable grip between the belt and the pulleys, preventing power loss, and maintaining optimal performance.
Proper tension provided by belt tensioners is crucial for efficient power transmission in machinery. When the belt is properly tensioned, it remains securely engaged with the pulleys, allowing for efficient transfer of power. The tensioner ensures that the belt maintains the necessary grip and traction to transmit power effectively, minimizing energy losses associated with slippage. By optimizing power transmission, belt tensioners contribute to improved overall system efficiency and performance.
Belt tensioners help in handling varying loads in machinery. As loads fluctuate, the tension in the belt needs to be adjusted to accommodate the changes. Belt tensioners with adjustable features allow for fine-tuning of the tension, ensuring that the belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission and prevents slippage, even when the machinery is subjected to varying loads, resulting in reliable and consistent performance.
Slippage between the belt and the pulleys can cause accelerated wear on both components. Belt tensioners mitigate slippage, reducing the frictional forces that lead to excessive wear. By maintaining proper tension, tensioners distribute the load evenly across the belt, minimizing localized wear. This results in reduced belt wear, extending the lifespan of both the belt and the pulleys. Additionally, by preventing slippage, belt tensioners help reduce the need for frequent belt replacements and adjustments, resulting in reduced maintenance requirements and costs.
Using belt tensioners improves the overall reliability of machinery. By preventing slippage and maintaining optimal power transmission, tensioners help ensure the consistent performance of belt-driven systems. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. Belt tensioners contribute to the overall reliability and uptime of the machinery, enhancing productivity and reducing the potential for costly downtime.
Slippage between the belt and the pulleys can generate noise and vibrations in machinery. Belt tensioners help minimize these issues by maintaining proper tension and preventing slippage. By ensuring a secure grip between the belt and the pulleys, tensioners reduce the likelihood of belt resonance, belt flutter, or excessive vibrations. This results in quieter operation and improved comfort for operators or users of the machinery.
In summary, using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. By maintaining proper tension, tensioners prevent slippage, ensure efficient power transfer, handle varying loads, reduce wear and maintenance needs, enhance system reliability, and minimize noise and vibrations. Incorporating belt tensioners into machinery design helps maximize performance, extend component lifespan, and ensure reliable operation in various industrial applications.
Can you provide examples of products or equipment that rely on belt tensioners for efficient operation?
Yes, there are numerous products and equipment that rely on belt tensioners for efficient operation. Belt tensioners play a crucial role in maintaining optimal tension in belts, ensuring proper power transmission, minimizing slippage, and extending the lifespan of belts and associated components. Here are some examples of products and equipment that commonly utilize belt tensioners:
- Automotive Engines:
- Industrial Machinery:
- Agricultural Equipment:
- HVAC Systems:
- Pumping Systems:
- Power Tools:
- Exercise Equipment:
Belt tensioners are essential components in automotive engines. They are commonly used in the serpentine belt system, which drives various engine accessories such as the alternator, power steering pump, air conditioning compressor, and water pump. Tensioners ensure that the serpentine belt remains properly tensioned to prevent belt slippage and maintain efficient operation of these engine accessories.
A wide range of industrial machinery relies on belt tensioners for efficient operation. Examples include conveyor systems, packaging equipment, printing machines, textile machinery, and woodworking machinery. Belt tensioners in these applications maintain proper tension in belts that drive moving components, ensuring consistent power transmission, smooth operation, and reduced downtime due to belt-related issues.
In agricultural equipment such as tractors, combines, and harvesters, belt tensioners are critical for the proper operation of belts that drive components like the fan, water pump, and various harvesting mechanisms. Tensioners help maintain optimal belt tension, preventing slippage and ensuring efficient power delivery to these vital agricultural machinery components.
Heating, ventilation, and air conditioning (HVAC) systems rely on belt tensioners for efficient operation of the blower fans, compressors, and pumps. Belt tensioners in HVAC systems maintain the correct tension in belts, ensuring proper airflow, efficient cooling or heating, and reliable operation of the HVAC equipment.
Pumping systems, including water pumps, fuel pumps, and hydraulic pumps, often incorporate belt tensioners to maintain the optimal tension in belts. These tensioners contribute to efficient power transmission, preventing slippage and ensuring reliable fluid transfer in various industries, such as water treatment, oil and gas, and construction.
Belt-driven power tools, such as belt sanders, grinders, and lathes, rely on belt tensioners to maintain proper tension in the belts that drive the tool’s rotating components. Tensioners in power tools ensure efficient power transfer, reduce belt wear, and enhance the tool’s overall performance.
Many types of exercise equipment, including treadmills, stationary bikes, and rowing machines, incorporate belt tensioners to ensure smooth and efficient operation. These tensioners maintain proper tension in the belts that drive the equipment’s resistance mechanisms, allowing users to achieve desired workout intensity and providing a consistent exercise experience.
These are just a few examples of the wide range of products and equipment that rely on belt tensioners for efficient operation. Belt tensioners are used in various industries and applications where belt-driven systems are employed, ensuring reliable power transmission, minimizing belt wear, and contributing to overall system performance and longevity.
Are there specific belt tensioner designs for different applications, like automotive or industrial equipment?
Yes, there are specific belt tensioner designs tailored for different applications, including automotive and industrial equipment. Manufacturers develop specialized belt tensioners to meet the unique requirements and operating conditions of various industries. Here’s a detailed explanation of specific belt tensioner designs for different applications:
- Automotive Belt Tensioners:
- Industrial Belt Tensioners:
- Agricultural Belt Tensioners:
- HVAC and Refrigeration Belt Tensioners:
- Specialized Belt Tensioners:
Belt tensioners used in automotive applications are designed with features that address the specific needs of the automotive industry. They are typically compact, lightweight, and engineered to withstand the demanding conditions found in vehicle engines. Automotive belt tensioners often incorporate automatic tensioning mechanisms, such as spring-loaded or hydraulic designs, to provide continuous tension control and compensate for belt elongation and wear over time. They also incorporate features like torsional vibration dampers to minimize vibrations and noise. Additionally, automotive belt tensioners undergo rigorous testing to meet industry standards and ensure reliable performance in diverse driving conditions.
Industrial belt tensioners are designed to meet the requirements of heavy-duty applications in various industries, such as manufacturing, material handling, mining, and construction. These tensioners are built to withstand high loads, harsh environments, and extended operating hours. Industrial belt tensioners often feature robust construction using durable materials like cast iron or steel. They may incorporate automatic tensioning mechanisms, hydraulic systems, or eccentric designs to provide precise tension control and adaptability to changing operating conditions. Industrial belt tensioners also come in a range of sizes and configurations to accommodate different belt sizes and drive systems used in industrial machinery.
Agricultural equipment, such as tractors, combines, and harvesters, have specific belt tensioner designs suited for the demanding conditions encountered in farming operations. Agricultural belt tensioners are designed to withstand dust, debris, and exposure to outdoor elements. They often incorporate automatic tensioning mechanisms with robust spring-loaded systems to compensate for belt wear and maintain optimal tension during extended periods of use. These tensioners are engineered to provide reliable performance in agricultural machinery, contributing to efficient power transmission and reduced maintenance requirements.
Belt tensioners used in HVAC and refrigeration systems are designed to ensure reliable and efficient operation of fans, blowers, compressors, and pumps. These tensioners are typically compact and incorporate automatic tensioning mechanisms to maintain consistent belt tension under varying operating conditions. They may also include features like vibration dampening to reduce noise and enhance system performance. HVAC and refrigeration belt tensioners are engineered to meet the specific requirements of cooling and ventilation systems, contributing to energy efficiency and prolonged equipment lifespan.
There are also specialized belt tensioners designed for specific applications or industries. For example, in the woodworking industry, belt tensioners with quick-release mechanisms are used to facilitate efficient belt changes. In the textile industry, belt tensioners with precise tension control are employed to ensure proper synchronization of moving parts. Marine propulsion systems utilize belt tensioners designed for marine environments, resistant to corrosion and capable of withstanding vibration and shock. These specialized tensioners are tailored to the specific needs of their respective industries, incorporating features and materials that optimize performance and durability.
Overall, the design of belt tensioners is influenced by the unique requirements of different applications and industries. By considering factors such as load capacity, environmental conditions, tension control mechanisms, and specific industry standards, manufacturers develop belt tensioners that are well-suited for their intended applications, ensuring optimal belt performance and system reliability.
editor by CX 2024-01-09