Product Description
Products Description
Product Name |
Hot Sale Belt Tensioner Pulley For Camry Avalon Auto Parts OEM 16620-31040 |
Certification | ISO/TS16949:2009 |
OE Number |
16620-31040 |
Car make |
TOYOTA ESTIMA:06.00- TOYOTA CAMRY:08.01- TOYOTA RAV4 III:11.05- TOYOTA CROWN Saloon:09.03- TOYOTA YALIS:10.06- TOYOTA ESTIMA III:10.05- TOYOTA HARRIER:10.03- TOYOTA HIGHLANDER:10.04- TOYOTA AVALON Saloon:10.04- LEXUS RX:04.03- LEXUS GS:04.05- LEXUS IS II:10.05- LEXUS RX:04.09- |
Quality guarantee |
12 months |
Leading time |
30 days |
MOQ |
50pcs |
Our Advantages
1. Factory direct wholesale, premium quality and lower price.
2. About 500 items, new products will be developed every year to meet customers’ requirements
3. Full Inspection before shipment
4. Most of the items are in stock can be dispatched immediately.
5. Easy to replace and install.
6. Patient & friendly aftersale services.
7. Small orders are acceptable.
Our Workshop
Packing & Delivery
Why Choose US
FAQ
1. Is the product fit to your car model?
Please check if the parts are suitable for your model before purchase.
Or please tell us your Car Model and OE Number, and tell us the product name.
2. What you can supply to me?
We could supply all kinds of auto spare parts and accessories. Besides ,we provide OEM service, shipping service and QC service as well to make sure you get ONE-STOP purchase process from us.
3. Can you customize the products as per our request?
Yes, we do OEM and ODM. We could make the product suggestion based on your idea and budget.
4. How to get a sample from you?
All samples will be free if unit cost under 20USD,but the freight should be on your side. If you have express account like DHL,UPS etc we will send you directly, if you don’t have you can send express cost to our paypal account, any sample cost could be returned when you make order.
5. What’s your payment term?
We usually doing 30% deposit and 70% balance against copy of B/L by T/T, We also accept L/C ,D/P if total amount over $30000.
Welcome to your inqury now and built a long cooperatitive relationship with our professional service.
Windy Zhang /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Tensioner Roller |
---|---|
Material: | Iron |
Certification: | ISO/Ts16949:2009 |
Standard: | Standard |
Condition: | New |
Product Name: | Tensioner Roller |
Samples: |
US$ 5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you explain the benefits of using belt tensioners in preventing slippage and optimizing power transmission in machinery?
Using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. Belt tensioners play a critical role in maintaining proper tension in the belt, ensuring efficient power transfer, and preventing slippage that can lead to decreased performance and premature wear. Here’s a detailed explanation of the benefits:
- Slippage Prevention:
- Efficient Power Transmission:
- Load Handling:
- Reduced Wear and Maintenance:
- System Reliability:
- Noise and Vibration Reduction:
Belt tensioners are primarily designed to prevent slippage between the belt and the pulleys. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency. Belt tensioners apply sufficient force to keep the belt tightly engaged with the pulleys, minimizing the risk of slippage. By maintaining the appropriate tension, tensioners ensure a reliable grip between the belt and the pulleys, preventing power loss, and maintaining optimal performance.
Proper tension provided by belt tensioners is crucial for efficient power transmission in machinery. When the belt is properly tensioned, it remains securely engaged with the pulleys, allowing for efficient transfer of power. The tensioner ensures that the belt maintains the necessary grip and traction to transmit power effectively, minimizing energy losses associated with slippage. By optimizing power transmission, belt tensioners contribute to improved overall system efficiency and performance.
Belt tensioners help in handling varying loads in machinery. As loads fluctuate, the tension in the belt needs to be adjusted to accommodate the changes. Belt tensioners with adjustable features allow for fine-tuning of the tension, ensuring that the belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission and prevents slippage, even when the machinery is subjected to varying loads, resulting in reliable and consistent performance.
Slippage between the belt and the pulleys can cause accelerated wear on both components. Belt tensioners mitigate slippage, reducing the frictional forces that lead to excessive wear. By maintaining proper tension, tensioners distribute the load evenly across the belt, minimizing localized wear. This results in reduced belt wear, extending the lifespan of both the belt and the pulleys. Additionally, by preventing slippage, belt tensioners help reduce the need for frequent belt replacements and adjustments, resulting in reduced maintenance requirements and costs.
Using belt tensioners improves the overall reliability of machinery. By preventing slippage and maintaining optimal power transmission, tensioners help ensure the consistent performance of belt-driven systems. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. Belt tensioners contribute to the overall reliability and uptime of the machinery, enhancing productivity and reducing the potential for costly downtime.
Slippage between the belt and the pulleys can generate noise and vibrations in machinery. Belt tensioners help minimize these issues by maintaining proper tension and preventing slippage. By ensuring a secure grip between the belt and the pulleys, tensioners reduce the likelihood of belt resonance, belt flutter, or excessive vibrations. This results in quieter operation and improved comfort for operators or users of the machinery.
In summary, using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. By maintaining proper tension, tensioners prevent slippage, ensure efficient power transfer, handle varying loads, reduce wear and maintenance needs, enhance system reliability, and minimize noise and vibrations. Incorporating belt tensioners into machinery design helps maximize performance, extend component lifespan, and ensure reliable operation in various industrial applications.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
What industries and machinery commonly use belt tensioners for optimal belt performance?
Various industries and machinery rely on belt tensioners to achieve optimal belt performance. Here’s a detailed explanation of the industries and machinery that commonly use belt tensioners:
- Automotive Industry:
- Industrial Machinery:
- Power Generation:
- Agricultural Equipment:
- Construction and Mining:
- HVAC and Refrigeration:
The automotive industry extensively utilizes belt tensioners in vehicles for various applications. Belt tensioners are commonly found in the engine accessory drive system, where they maintain the proper tension in the serpentine or V-belts that power components such as the alternator, air conditioning compressor, power steering pump, and water pump. Belt tensioners ensure efficient power transmission, reduce belt slippage, and contribute to the overall reliability and performance of automotive engines.
A wide range of industrial machinery relies on belt tensioners for optimal belt performance. Industries such as manufacturing, food processing, packaging, printing, and material handling use belt-driven systems for conveyor belts, production lines, pumps, compressors, and other equipment. Belt tensioners help maintain the proper tension in these applications, ensuring smooth operation, efficient power transmission, and minimizing downtime due to belt slippage or failure.
In the power generation sector, belt tensioners are commonly used in applications such as generators, turbines, and auxiliary equipment. These systems often utilize belts to transfer power between components, and the tensioners play a crucial role in maintaining proper belt tension. Belt tensioners help optimize power transmission efficiency, reduce vibrations, and enhance the overall reliability of the power generation equipment.
Agricultural machinery, including tractors, combines, and other farming equipment, often rely on belt-driven systems for various operations. Belt tensioners are utilized to maintain the tension in belts powering agricultural implements, such as harvesters, balers, and grain conveyors. By ensuring optimal tension, belt tensioners contribute to the efficient operation of agricultural equipment, improving productivity and reducing maintenance requirements.
Construction and mining industries commonly employ belt-driven systems in equipment such as excavators, loaders, crushers, and conveyor systems. Belt tensioners are used to maintain the proper tension in belts powering these machines, ensuring reliable and efficient operation in demanding environments. Belt tensioners help prevent belt slippage, reduce downtime, and contribute to the longevity of the equipment.
The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on belt-driven systems for various applications, including fans, blowers, compressors, and pumps. Belt tensioners are critical in maintaining the proper tension in these systems, ensuring efficient power transmission and reducing belt-related issues such as slippage or premature wear. Belt tensioners contribute to the overall performance and reliability of HVAC and refrigeration equipment.
In addition to the industries mentioned above, belt tensioners are also utilized in a wide range of other machinery and equipment, including woodworking machinery, textile machinery, marine propulsion systems, and more. The versatility and benefits of belt tensioners make them a valuable component for achieving optimal belt performance in numerous industrial and mechanical applications.
editor by CX 2024-03-28
China Best Sales Hot Sale CZPT Auto Parts V Belt Deflection CZPT Pulley OEM 575160 96366405 for Peugeot Car Series for Peugeot 206/307/406/407/607/806/807 with Great quality
Product Description
Product Description
Hot Sale CZPT Auto Parts V Belt Deflection Xihu (West Lake) Dis. Pulley OEM 575160 96366405 for Peugeot Car Series for Peugeot 206/307/406/407/607/806/807
Water Pump for CITROEN
Water Pump for FIAT
Water Pump for LXIHU (WEST LAKE) DIS.A
Water Pump for PEUGEOT
All kinds of car water pumps can be produced for you. Welcome to your inquiry.
MIC NO. | REF&OEM NO | APPLICATION | YEAR | PHOTO |
TB34PG9902 | 951170 CITROEN/ PEUGEOT : 575160 CITROEN/ PEUGEOT : 96366405 FIAT / LXIHU (WEST LAKE) DIS.A : 963664 0571 |
CITROEN C4 Picasso I MPV (UD_) 2.0 i 16V CITROEN C5 I (DC_) 1.8 16V (DC6FZB, DC6FZE) CITROEN C5 I (DC_) 2.0 16V (DCRFNC, DCRFNF) CITROEN C5 I Break (DE_) 1.8 16V (DE6FZB, DE6FZE) CITROEN C5 I Break (DE_) 2.0 16V (DERFNF, DERFNC, RERFNC) CITROEN C5 I Break (DE_) 2.0 16V HPi (DERLZB) CITROEN C5 II (RC_) 1.8 16V (RC6FZB) CITROEN C5 II Break (RE_) 1.8 16V (RE6FZB) CITROEN C8 (EA_, EB_) 2.0 CITROEN C8 (EA_, EB_) 2.2 CITROEN EVASION MPV (22, U6) 2.0 16V CITROEN JUMPY (U6U_) 2.0 CITROEN JUMPY Box (BS_, BT_, BY_, BZ_) 2.0 i 16V CITROEN JUMPY Platform/Chassis (BU_,BV_,BW_,BX_)2.0 CITROEN XSARA (N1) 2.0 16V CITROEN XSARA Break (N2) 2.0 16V CITROEN XSARA Coupe (N0) 2.0 16V CITROEN XSARA PICASSO (N68) 1.8 16V FIAT SCUDO Box (220_) 2.0 FIAT SCUDO Combinato (220_) 2.0 16V FIAT ULYSSE (179_) 2.0 (179BXA11, 179BXA1A) LXIHU (WEST LAKE) DIS.A PHEDRA (179_) 2.0 (179AXA11, 179AXA1A) LXIHU (WEST LAKE) DIS.A ZETA (22_) 2.0 16V (220AQ5, 220AQ4) PEUGEOT 206 CC (2D) 2.0 S16 PEUGEOT 206 Hatchback (2A/C) 2.0 RC PEUGEOT 206 SW (2E/K) 2.0 16V PEUGEOT 307 (3A/C) 2.0 16V PEUGEOT 307 Break (3E) 2.0 PEUGEOT 307 CC (3B) 2.0 16V PEUGEOT 307 SW (3H) 2.0 16V PEUGEOT 406 (8B) 1.8 16V PEUGEOT 406 (8B) 2.0 16V PEUGEOT 406 (8B) 2.2 PEUGEOT 406 Break (8E/F) 1.8 16V PEUGEOT 406 Break (8E/F) 2.0 16V PEUGEOT 406 Break (8E/F) 2.2 PEUGEOT 406 Coupe (8C) 2.0 16V PEUGEOT 406 Coupe (8C) 2.2 PEUGEOT 407 (6D_) 1.8 PEUGEOT 407 (6D_) 2.0 PEUGEOT 407 (6D_) 2.2 PEUGEOT 407 SW (6E_) 1.8 PEUGEOT 407 SW (6E_) 2.0 PEUGEOT 407 SW (6E_) 2.2 PEUGEOT 607 (9D, 9U) 2.0 PEUGEOT 607 (9D, 9U) 2.2 16V PEUGEOT 806 (221) 2.0 16V PEUGEOT 807 (E) 2.0 PEUGEOT 807 (E) 2.2 PEUGEOT EXPERT (224_) 2.0 |
2001-2004 2001-2004 2001-2004 2001-2004 2001-2004 2004- 2004- 2002- 2002- 2000-2002 2000-2006 2000-2006 2003-2006 2000-2005 2000-2005 2000-2005 2000-2005 2000-2006 2000-2006 2002-2011 2002-2571 2000-2002 2000-2007 2003-2007 2002-2007 2000-2005 2002-2005 2003-2009 2002-2005 2000-2004 1999-2000 2000-2004 2000-2004 2000-2004 2000-2004 1999-2000 2002-2004 2004-2005 2004-2005 2004-2006 2004-2005 2004-2005 2004-2005 2000-2005 2005-2571 2000-2002 2002- 2002- 2000-2006 |
Company Profile
Our Factory
Exhibition Shows
FAQ
Q1: Are you a trading company or manufacturer?
A1: We are industrial and export combination.
Q2: If there’s any quality problem, what would you do to guarantee our rights?
Q2: We seldom get complains from our customers so far. If it really happens, we’ll be responsible for that.
Q3: How long is your delivery time?
Q3: Around 30-45 days if no stock; Around 7 days when stock available.
Q4: What’s your sample policy?
A4: Samples under $50.0 will be no charge, however the freight charge should be borne on buyer’s account.
Normal delivery time will be 4 days when stock available.
How to Repair a Timing Belt Tensioner
Your timing belt tensioner is a critical component of your vehicle’s drivetrain. Too little tension, for example, will cause the belt to slip, and too much tension can overload shaft bearings, leading to premature failure. If you notice that your belt tensioner is not working properly, you should immediately visit a mechanic. Corrosion from road splash, dirt, mud, or other debris can jam the tensioner housing. To avoid this, make sure that you replace your timing belt tensioner as soon as possible.
Symptoms of a bad belt tensioner
If you’ve ever wondered what signs indicate a bad belt tensioner, look no further than your vehicle’s engine. Worn belts or a broken tensioner can cause an irritating squealing noise, as well as the belt to slip. Even worse, a bad tensioner can cause water to enter the belt and pulley, resulting in water damage. A worn tensioner is usually the culprit of the noise, but there are also other warning signs that a belt is in trouble.
Your vehicle’s engine may start to run poorly or even squeal when you turn the key. Similarly, your engine may fail to start at all, or the check engine light may illuminate. The belt may also start to wear out in an unusual pattern. These signs indicate that the tensioner is in need of replacement. If you notice 1 or more of these signs, get your car checked right away.
To check the condition of the tensioner, remove the drive belt and observe the pulley. You may notice rust dripping or bleeding at the mounting bolts, which are the most common signs of a bad tensioner. If you can’t remove the drive belt, check the pulley by rotating it. If you feel resistance, the pulley is likely worn or slack.
Failure of the belt tensioner will also cause other parts of the car to fail. If a bad belt tensioner isn’t fixed quickly, you might not be able to use the vehicle properly. You could end up breaking your car’s engine, losing power steering, and possibly even the water pump. If your car is not running right, you could be stuck in the middle of nowhere. Even if the alternator doesn’t work, you’ll still have a malfunctioning power steering system and a dead AC system.
A broken timing belt tensioner can cause strange noises or a no-start condition. These noises and symptoms are signs of a bad belt tensioner, and you’ll have to replace it ASAP. If you don’t know what symptoms mean, don’t hesitate to take your car to a mechanic. You’ll be surprised how easy it is to check this vital component and save yourself a bunch of money.
Components of a belt tensioner
The components of a belt tensioner assembly consist of 4 key components. The clearance between the pulley and the base is critical to the tensioner’s operation. If the tensioner is installed incorrectly, the spring can break and cause severe injury. The spring’s preload and powerful force make it difficult to service the unit safely. These parts are non-serviceable. If you are unsure of how to repair your tensioner, contact an authorized mechanic.
The components of a belt tensioner drive are shown in FIG. 2. The rotor shaft is connected to the drive screw, while the second transmission is connected to the gear shaft. The rotor and gear shaft are in parallel with each other. The gear shaft and worm wheel are connected to the belt tensioner drive. In other words, the belt tensioner drive is located in the B-pillar of the motor vehicle.
A belt tensioner may be equipped with a drive shaft and electric motor. The drive shaft may also contain a worm gear or worm wheel. The drive shaft also has an intermediate gearbox. Once the tensioner is set, it is ready to move to its safe-position position. It is a relatively simple and inexpensive replacement for your belt. When replacing a multi-ribbed belt, be sure to replace the tensioner along with the belt. Gates recommends replacing all wear parts at once.
In the event of a faulty drive belt tensioner, the belt will not stay taut. The pulley can wobble and cause the belt to fray. In addition to this, the bearings can cause a loud squealing noise. In this case, the accessory motors will continue to run, while the belt itself will not. Therefore, replacing the timing belt tensioner is an important part of maintaining the car.
In some systems, the belt tensioner uses a worm gear as the first gear. This results in rolling engagement of the screw’s teeth. This reduces noise and vibrations, while maximizing the efficiency of the belt tensioner drive. Additionally, a worm gear can eliminate the need for additional parts in belt tensioners. While this may not be practical in all instances, it is a good choice for space-constrained environments.
Repair options for a timing belt tensioner
A timing belt tensioner is an essential part of an automobile’s timing chain and is responsible for ensuring proper timing. Proper alignment of timing marks is essential to the proper operation of the engine, and improper alignment may lead to damage to the engine. To repair a timing belt tensioner, there are several repair options available. First, you need to remove the engine cover. You can then remove the timing belt tensioner by loosening the pulley using a ratchet or breaker bar.
When the timing belt isn’t properly tensioned, the engine will misfire. The engine misfires when the valve opens and the pistons rise at the wrong time. When this happens, the timing belt cannot properly grip the gears and the engine will not function. If this part fails, you’ll have to replace the whole timing chain. However, if you are handy with tools, you can easily replace the entire timing belt tensioner yourself.
If your timing belt tensioner is out of alignment, you should replace it. If you’re not sure whether it needs to be replaced, check it with a professional and learn the details of the repair. The timing belt tensioner is the most critical part of the engine, so it’s important to know about it. Otherwise, your car won’t run as well as it could. Repair options for a timing belt tensioner will vary depending on the severity of the problem and how much damage it has done.
While there are several repair options for a timing belt tensioner, the average cost of replacement is $364 to $457, and this doesn’t take into account any tax or fee you may be charged. DIY repair methods will usually cost you $50 to $150, and you’ll likely save a lot of money in the process. However, you need to remember that you may be unable to do the job yourself because you don’t know how to use the proper tools and equipment.
While it is not difficult to replace a timing belt tensioner on your own, you should know that you’ll need to remove other parts of the engine as well as special tools to make the repair properly. This is an advanced repair job and requires a great deal of skill. If you’re new to home car repair, you may not want to attempt it yourself. There are many other options, such as hiring a mechanic.
Installation instructions
While there are no universal installation instructions for belt tensioners, the manufacturer of your car may provide detailed instructions. Before attempting to replace your tensioner, read the manufacturer’s recommended procedures carefully. To install a new tensioner properly, unload the old 1 and take a picture or sketch of how the belt should be routed. Once the old tensioner is out, follow the manufacturer’s torque specifications. Make sure to unload and remove the belt from the tensioner, and follow the manufacturer’s torque specifications to install the new one.
If your car comes with a manual belt tensioner, you can follow the instructions. The manual will have a corresponding guide for installation. When installing a belt tensioner, make sure the manual clearly states the static tension for your particular model. Check that it is in line with the engine relief to ensure proper belt tension. You can then use a 6mm allen key to turn the tensioner clockwise and counterclockwise. Once it is in position, release the tensioner to operate. The belt tensioner should now apply the proper tension to your belt.
Before installing a new belt tensioner, make sure you read the manual completely. You should follow these steps carefully to avoid any problems with the tensioner. If the tensioner has failed, you must replace it immediately. A new belt tensioner will help you ensure proper performance of your accessory belt drive system. If you are installing a new multi-ribbed belt, you should replace the tensioner as well. However, it is important to note that replacing the belt tensioner is a complicated process and requires a mechanic to be able to safely remove the belt from the engine.
To install a second stage drive belt, walk the belt onto the input drive and generator. Ensure that the belt is seated properly in the grooves of the pulleys. Next, replace the input drive belt and right and left Drive Disk covers. Test the machine to ensure that it is working properly. If it doesn’t, replace the original drive belt. After installing the new belt, you may want to read the manual again to make sure it is in perfect condition.