Tag Archives: tensioner pulley cost

China Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX) axle cost

Product Description

MIC NO. OEM.NO APPLICATION YEAR PHOTO
TB34PG9301 957726
082990
9642929880
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW)         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW)         
CITROEN  C2 (JM_) 1.1         
CITROEN  C2 (JM_) 1.4         
CITROEN  C3 I (FC_, FN_) 1.1 i         
CITROEN  C3 I (FC_, FN_) 1.4 i         
CITROEN  C3 I (FC_, FN_) 1.4 i Bivalent         
CITROEN  C3 II (SC_) 1.1 i         
CITROEN  C3 II (SC_) 1.4         
CITROEN  C3 Pluriel (HB_) 1.4         
CITROEN  NEMO Box (AA_) 1.4         
CITROEN  NEMO Estate 1.4         
CITROEN  SAXO (S0, S1) 1.1 X,SX         
CITROEN  XSARA (N1) 1.4 i         
CITROEN  XSARA Break (N2) 1.4 i         
CITROEN  XSARA Coupe (N0) 1.4 i         
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A)         
FIAT  QUBO (225_) 1.4 (225AXA1A)         
PEUGEOT  1007 (KM_) 1.4         
PEUGEOT  106 II (1A_, 1C_) 1.1 i         
PEUGEOT  206 Hatchback (2A/C) 1.1         
PEUGEOT  206 Hatchback (2A/C) 1.1 i         
PEUGEOT  206 Hatchback (2A/C) 1.4 i         
PEUGEOT  206 Hatchback (2A/C) 1.4 LPG         
PEUGEOT  206 Saloon 1.4         
PEUGEOT  206 SW (2E/K) 1.1         
PEUGEOT  206 SW (2E/K) 1.4         
PEUGEOT  206+ (2L_, 2M_) 1.1         
PEUGEOT  206+ (2L_, 2M_) 1.4 i         
PEUGEOT  207 (WA_, WC_) 1.4         
PEUGEOT  207 SW (WK_) 1.4         
PEUGEOT  306 (7B, N3, N5) 1.1         
PEUGEOT  306 (7B, N3, N5) 1.4 SL         
PEUGEOT  306 Break (7E, N3, N5) 1.4         
PEUGEOT  306 Hatchback (7A, 7C, N3, N5) 1.1         
PEUGEOT  307 (3A/C) 1.4         
PEUGEOT  BIPPER (AA_) 1.4         
PEUGEOT  BIPPER Tepee 1.4         
PEUGEOT  PARTNER Box (5_, G_) 1.1         
PEUGEOT  PARTNER Box (5_, G_) 1.4         
PEUGEOT  PARTNER Box (5_, G_) 1.4 BiFuel         
PEUGEOT  PARTNER Combispace (5_, G_) 1.1         
PEUGEOT  PARTNER Combispace (5_, G_) 1.4
1996-2008
2002-2011
1996-2011
2003-2005
1996-2008
2002-2011
1996-2011
2003-2008
2003-2012
2003-2009
2002-
2002-2571
2002-
2009-2013
2009-2016
2003-
2008-
2009-
1996-2003
1997-2005
1997-2005
1998-2005
2007-
2008-
2005-
1996-2004
1998-2000
1998-2007
1998-2012
2006-2007
2007-
2002-
2002-2007
2009-2013
2009-2013
2006-2013
2007-2012
1994-2001
1994-2001
1997-2002
1993-2001
2000-2003
2008-
2008-
1996-2005
1996-2015
2003-2006
1996-2002
1996-2015

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: One year
Car Make: CITROEN
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

Can you describe the various mounting options and installations for belt tensioners in different settings?

Mounting options and installations for belt tensioners can vary depending on the specific application and the belt-driven system’s design. Different settings may require different approaches to ensure proper alignment, tensioning, and functionality of the tensioner. Here’s a detailed description of the various mounting options and installations for belt tensioners in different settings:

  • Fixed Mounting:
  • The most common mounting option for belt tensioners is fixed mounting. In this configuration, the tensioner is rigidly attached to a stationary part of the system, such as the engine block or a structural component. Fixed mounting provides stability and ensures that the tensioner remains in a fixed position relative to the belt. It is widely used in automotive, industrial, and machinery applications.

  • Adjustable Mounting:
  • In some applications, adjustable mounting options are preferred to accommodate variations in belt length, alignment, or tension requirements. Adjustable tensioners allow for fine-tuning of the tensioning force by enabling adjustments in the tensioner’s position. This can be achieved through slots, elongated holes, or adjustable brackets that provide flexibility in the tensioner’s placement. Adjustable mounting is beneficial when precise tension adjustment is necessary or when belt drives undergo frequent changes.

  • Spring-Loaded Tensioners:
  • Spring-loaded tensioners are commonly used in belt-driven systems. These tensioners incorporate a spring mechanism that applies constant tension to the belt. Spring-loaded tensioners can be mounted in various configurations, including fixed or adjustable mounting. The spring mechanism compensates for belt elongation, wear, or thermal expansion, ensuring consistent tension throughout the belt’s operational life.

  • Idler Pulley Tensioners:
  • Idler pulley tensioners utilize an additional pulley to redirect the belt’s path and apply tension. The tensioner is typically mounted on an adjustable bracket or arm, allowing for precise positioning of the idler pulley relative to the belt. Idler pulley tensioners are often used in serpentine belt systems, where multiple accessories are driven by a single belt. Proper alignment and tensioning of the idler pulley are crucial for efficient power transmission and belt longevity.

  • Hydraulic Tensioners:
  • Hydraulic tensioners employ a hydraulic cylinder or piston to apply tension to the belt. These tensioners are commonly used in applications where high tension forces or dynamic tension control is required. Hydraulic tensioners may have specific mounting requirements due to the need for hydraulic connections, such as hoses or fittings. They are often used in heavy-duty machinery, automotive engines, or other systems demanding precise tension control.

  • Overhead Tensioners:
  • In certain settings, such as conveyor systems or overhead power transmission systems, belt tensioners may be mounted overhead. Overhead tensioners are typically suspended from a support structure, allowing the tensioner to apply tension to the belt from above. This configuration helps maximize space utilization and facilitates maintenance and belt replacement in vertically-oriented systems.

  • Combination Mounting:
  • In complex belt-driven systems, a combination of mounting options may be employed. For example, a fixed tensioner may be used in one location, while an adjustable tensioner is used in another to accommodate different belt lengths or alignment requirements. Combination mounting allows for customized tensioning solutions tailored to the specific system design and operational needs.

It is important to note that the specific mounting option and installation for a belt tensioner will depend on the system’s design, space constraints, belt type, and the manufacturer’s recommendations. It is essential to follow the manufacturer’s guidelines and specifications for proper tensioner installation to ensure optimal performance and longevity of the belt-driven system.

In summary, the mounting options and installations for belt tensioners can include fixed mounting, adjustable mounting, spring-loaded tensioners, idler pulley tensioners, hydraulic tensioners, overhead tensioners, and combinations thereof. Each mounting option offers advantages and considerations depending on the application’s requirements and the specific belt-driven system’s design.

belt tensioner

How do belt tensioners contribute to reducing vibrations and noise in machinery?

Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here’s a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:

  • Stabilizing Belt Movement:
  • Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.

  • Minimizing Belt Resonance:
  • Belt resonance refers to the phenomenon where a belt’s natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.

  • Damping Vibrations:
  • Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner’s design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.

  • Reducing Belt Slippage:
  • Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.

  • Minimizing Belt Flapping:
  • When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.

  • Promoting Stable Rotational Motion:
  • A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.

In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.

belt tensioner

Can you describe the various types of belt tensioners, such as automatic or manual tensioners?

There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:

  1. Manual Belt Tensioners:
  2. Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.

  3. Automatic Belt Tensioners:
  4. Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.

  5. Hydraulic Belt Tensioners:
  6. Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.

  7. Eccentric Belt Tensioners:
  8. Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.

  9. Idler Pulley Tensioners:
  10. Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.

In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.

Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.

China Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)   axle costChina Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)   axle cost
editor by CX 2024-03-27