Product Description
EASTIGER is a professional supplier for truck body parts & truck spare parts, we have
1621322
1732887
1617341
1698298
61417A
1627415
1698298
61442A
1739550
186~87
61447
1619667(96975)
1295910
166571
1435689
1735689
1385168
1635074
1373453
1814961
1793878
1690885
1879833
1455716
1699564
1995152
164 0571
1949540
13924
1872106
1948919
1405713
17571
4931694
5273339
5273338
10571
1693978
1458701
1805821
1805823
683276 (19052/19055)
1805822
683278 (19063/19064)
1805824
646745
1801594
FAG805052C
0646745
0667962
LH
RH
1236038
1739947
1340321
72524
79179
LH
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Replacement Sent |
---|---|
Warranty: | 1 Year Warranty |
Type: | Truck Spare Parts |
Certification: | ISO9001 |
Color: | Original Colour |
Material: | Steel |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Are there specific considerations for choosing belt tensioners in applications with varying loads or environmental conditions?
When selecting belt tensioners for applications with varying loads or environmental conditions, there are several specific considerations to keep in mind. The performance and longevity of belt tensioners can be influenced by the dynamic nature of the loads and the environmental factors they are exposed to. Here’s a detailed explanation of the considerations for choosing belt tensioners in such applications:
- Load Capacity:
- Adjustability:
- Temperature Range:
- Corrosion Resistance:
- Contamination Protection:
- Shock and Vibration Resistance:
- Maintenance and Serviceability:
In applications with varying loads, it is crucial to select belt tensioners with an appropriate load capacity. The tensioner should be capable of exerting sufficient force to maintain the desired tension in the belt, even under the highest anticipated load conditions. It is important to consider the maximum peak loads, as well as any transient or shock loads that may occur during operation. Choosing a tensioner with an adequate load capacity ensures reliable and consistent tensioning performance, preventing issues like belt slippage or excessive wear.
In applications where the loads vary significantly, having an adjustable belt tensioner can be beneficial. An adjustable tensioner allows for fine-tuning of the tensioning force to accommodate different load conditions. By adjusting the tensioner’s position or tension setting, the tension can be optimized for various load levels, ensuring proper belt engagement and tension throughout the operating range. This flexibility helps maintain optimal performance and reduces the risk of belt-related problems.
Environmental conditions, particularly temperature variations, can affect the performance and durability of belt tensioners. In applications with extreme temperature ranges, it is important to choose tensioners that can withstand the anticipated temperatures without compromising their functionality. High-temperature or low-temperature resistant materials and lubricants may be required to ensure that the tensioner operates reliably and maintains its mechanical properties within the specified temperature range.
Applications exposed to harsh environments, such as those with high humidity, chemicals, or saltwater, require belt tensioners with excellent corrosion resistance. Corrosion-resistant materials, such as stainless steel or specialized coatings, should be considered to protect the tensioner from corrosion and degradation. This helps maintain the tensioner’s performance and extends its service life, even in challenging environmental conditions.
In environments where the belt tensioner may be exposed to contaminants like dust, dirt, or debris, it is important to choose tensioners with effective contamination protection features. Seals, shields, or covers can be incorporated into the tensioner design to prevent the ingress of contaminants that could compromise the tensioner’s functionality or cause premature wear. Proper contamination protection helps ensure reliable performance and reduces the need for frequent maintenance or replacement.
Applications with significant shock or vibration levels require belt tensioners that can withstand these dynamic forces. Tensioners with robust construction, reinforced components, or dampening features can help absorb shocks and vibrations, reducing the risk of tensioner failure or damage. It is important to consider the expected shock and vibration levels in the application and select tensioners designed to handle such conditions.
Applications with varying loads or challenging environmental conditions may require more frequent inspection and maintenance of the belt tensioners. When choosing tensioners, consider factors such as accessibility for inspection, ease of adjustment or replacement, and the availability of spare parts. Tensioners that are designed for easy maintenance and serviceability can help minimize downtime and ensure the continued performance of the belt-driven system.
In summary, choosing the right belt tensioners for applications with varying loads or environmental conditions requires considering factors such as load capacity, adjustability, temperature range, corrosion resistance, contamination protection, shock and vibration resistance, and maintenance/serviceability. By carefully evaluating these considerations and selecting tensioners that meet the specific requirements of the application, optimal performance, and longevity of the belt-driven system can be ensured.
What is the impact of proper belt tensioning on the lifespan and performance of belts?
Proper belt tensioning has a significant impact on the lifespan and performance of belts. Maintaining the correct tension in belts is crucial for optimal power transmission, minimizing slippage, reducing wear, and ensuring reliable operation. Here’s a detailed explanation of the impact of proper belt tensioning:
- Prevents Slippage:
- Reduces Wear and Friction:
- Ensures Optimal Power Transmission:
- Reduces Maintenance Requirements:
- Enhances Belt Lifespan:
- Improves System Reliability:
Proper belt tensioning prevents slippage between the belt and the pulleys or sheaves it is running on. When belts slip, power transmission efficiency decreases, and the belt can wear rapidly. By applying the correct tension, the belt grips the pulleys or sheaves firmly, ensuring efficient power transfer and minimizing slippage, which can lead to improved performance and energy efficiency.
When belts are improperly tensioned, excessive wear and friction can occur. Insufficient tension can cause the belt to slip and slide on the pulleys, generating heat and increasing friction between the belt and the pulley surfaces. This friction leads to premature wear of the belt and the pulleys, reducing their lifespan. On the other hand, excessive tension can put excessive stress on the belt, leading to accelerated wear and potential damage. Proper belt tensioning helps to minimize wear and friction, extending the lifespan of belts and associated components.
Correct tensioning of belts ensures optimal power transmission from the driving pulley to the driven pulley. When belts are properly tensioned, they can efficiently transfer the required power without energy losses due to slippage or excessive tension. This results in improved overall system performance, as the transmitted power is effectively utilized for driving various components or performing specific tasks.
Proper belt tensioning can help reduce maintenance requirements and associated costs. When belts are correctly tensioned, they experience less wear, require fewer adjustments, and have a lower chance of failure or premature replacement. By maintaining the appropriate tension, the need for frequent belt replacements and unplanned downtime due to belt-related issues can be significantly minimized, contributing to improved productivity and cost savings.
The lifespan of belts is directly influenced by proper tensioning. When belts are under the correct tension, they experience less stress, wear, and fatigue. This can prolong the lifespan of the belt, reducing the frequency of replacements and associated costs. Additionally, proper tensioning helps to distribute the load evenly across the belt, preventing localized wear and extending the overall durability of the belt.
Proper belt tensioning contributes to the overall reliability of belt-driven systems. By maintaining the correct tension, the risk of unexpected belt failures, slippage-related issues, and associated equipment downtime is significantly reduced. This ensures that the system operates reliably, minimizing interruptions in production or operation and enhancing overall system efficiency and performance.
In summary, proper belt tensioning plays a vital role in maximizing the lifespan and performance of belts. It prevents slippage, reduces wear and friction, ensures optimal power transmission, reduces maintenance requirements, enhances belt lifespan, and improves system reliability. By following manufacturer recommendations and using appropriate tensioning techniques, operators can optimize belt performance, minimize downtime, and achieve efficient and reliable operation of belt-driven systems.
Can you explain the importance of proper belt tensioning in machinery and automotive applications?
Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here’s a detailed explanation of the importance of proper belt tensioning:
- Power Transmission Efficiency:
- Belt Life and Reliability:
- Reduced Noise and Vibration:
- Optimal Load Distribution:
- Improved Safety:
Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.
Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.
Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.
The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.
Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.
In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.
editor by CX 2024-04-12
China Good quality Alternator / Belt Tensioner / Tension Roller / Water Pump for Daf Truck Spare Parts axle alignment cost
Product Description
EASTIGER is a professional supplier for truck body parts & truck spare parts, we have +2
1257890
RH
1395485
1506193
WABCO:47557147
61447
1619667(96975)
1295910
166571
1435689
1735689
1385168
1635074
1373453
1814961
1793878
1694967
1690885
1879833
1455716
1699564
1664140
1995152
1212816
1949539
164 0571
1949540
1392400
2011888
1872106
1948919
1405713
17571
4931694
5273339
5273338
10571
1693978
1458701
1805821
1805823
683276 (19052/19055)
1805822
683278 (19063/19064)
1805824
646745
1801594
FAG805052C
0646745
667962
0667962
LH
RH
1236038
K571
1797053
1739947
1340321
72524
79179
72544
79180
72545
72523
2032424
RH
652575
LH
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Replacement Sent |
---|---|
Warranty: | 1 Year Warranty |
Type: | Truck Spare Parts |
Certification: | ISO9001 |
Color: | Original Colour |
Material: | Steel |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you provide guidance on the selection and sizing of belt tensioners for specific belt applications?
When selecting and sizing belt tensioners for specific belt applications, several factors need to be considered to ensure optimal performance and longevity. Here’s a detailed guidance on the selection and sizing of belt tensioners:
- Belt Type and Size:
- System Requirements:
- Tensioner Type:
- Tensioner Design and Mounting:
- Tensioner Load Capacity:
- Environmental Considerations:
- Manufacturer Recommendations:
Start by identifying the type and size of the belt used in the application. Belts can vary in terms of width, length, profile (V-belt, timing belt, etc.), and construction material (rubber, polyurethane, etc.). The tensioner should be compatible with the specific belt type and size to ensure proper fit and functionality.
Consider the requirements of the belt-driven system. Evaluate factors such as the desired tension level, operating speed, load conditions, and environmental factors. The tensioner should be capable of providing the required tension force while accommodating the system’s operating parameters.
Choose the appropriate tensioner type based on the application’s needs. Common types include automatic tensioners, idler pulley tensioners, spring-loaded tensioners, and hydraulic tensioners. Each type has its advantages and limitations, so select the one that best suits the specific belt application.
Consider the design and mounting requirements of the tensioner. Evaluate the space availability, mounting configuration, and alignment with other components in the belt drive system. Some tensioners offer adjustable mounting positions or different design variations to accommodate various installation scenarios.
Check the load capacity of the tensioner to ensure it can handle the expected loads and forces in the belt system. Consider factors such as the belt tension, shock loads, and dynamic forces. The tensioner should have adequate load capacity to prevent premature wear or failure under normal operating conditions.
Assess the environmental conditions in which the tensioner will operate. Factors such as temperature extremes, moisture, dust, chemicals, and exposure to UV radiation can impact the tensioner’s performance and durability. Choose a tensioner that is designed to withstand the specific environmental challenges of the application.
Refer to the manufacturer’s guidelines and recommendations for selecting and sizing the tensioner. Manufacturers often provide technical data, specifications, and selection guides that assist in choosing the appropriate tensioner for specific belt applications. Follow their recommendations to ensure compatibility and optimal performance.
It is important to note that the selection and sizing of belt tensioners may require technical expertise and consideration of specific application requirements. If in doubt, consult with belt tensioner manufacturers or industry experts who can provide further guidance based on their knowledge and experience.
In summary, when selecting and sizing belt tensioners for specific belt applications, consider the belt type and size, system requirements, tensioner type, design and mounting, load capacity, environmental conditions, and manufacturer recommendations. By carefully evaluating these factors, you can choose a suitable tensioner that ensures proper tensioning, reliable operation, and extended belt life in the belt-driven system.
Can belt tensioners be customized or modified for unique industrial or automotive needs?
Belt tensioners can indeed be customized or modified to meet unique industrial or automotive needs. The design and functionality of belt tensioners can be adapted to specific requirements, allowing for greater versatility and compatibility in various applications. Here’s a detailed explanation of how belt tensioners can be customized or modified for unique needs:
- Tensioner Design:
- Tensioner Material:
- Tensioner Force and Range:
- Tensioner Damping and Vibration Control:
- Environmental Considerations:
- Integration with Monitoring Systems:
The design of belt tensioners can be customized to accommodate different space constraints, mounting configurations, and belt drive layouts. Manufacturers can offer various tensioner designs, including compact tensioners, offset tensioners, or multi-belt tensioners, to address specific installation requirements. By adapting the tensioner design, it becomes possible to integrate the tensioner seamlessly into unique industrial or automotive systems.
Belt tensioners are typically constructed using durable materials such as cast iron, steel, or aluminum. However, for specific applications that involve extreme temperatures, corrosive environments, or weight considerations, the tensioner material can be customized. For example, in high-temperature environments, tensioners can be made from heat-resistant alloys or ceramics. Customizing the tensioner material ensures optimal performance and longevity in unique operating conditions.
The tensioning force and tension range of belt tensioners can be tailored to suit specific applications. Different industrial or automotive systems may require varying tension levels based on factors like load requirements, operating conditions, or desired power transmission efficiency. Manufacturers can customize the tensioner force and range to match these specific needs, ensuring the proper tension is maintained in the belt drive system.
Customized belt tensioners can incorporate damping and vibration control features to address specific noise and vibration requirements. In applications where noise reduction or vibration dampening is critical, tensioners can be modified with additional components or materials to absorb or dampen vibrations, resulting in smoother and quieter operation.
Specialized belt tensioners can be customized for unique environmental conditions. For instance, in applications exposed to high levels of dust, moisture, or chemicals, tensioners can be modified with protective coatings, seals, or materials that enhance resistance to corrosion, abrasion, or contamination. By customizing the tensioners to withstand harsh environments, their performance and service life can be optimized.
In some cases, belt tensioners can be modified to integrate with monitoring systems or sensors. This customization allows for real-time monitoring of belt tension and condition, enabling proactive maintenance or automated adjustments. Integration with monitoring systems provides enhanced control and efficiency, particularly in critical industrial or automotive applications.
In summary, belt tensioners can be customized or modified to meet unique industrial or automotive needs. Customization options include adapting the tensioner design, selecting appropriate materials, adjusting the tensioning force and range, incorporating damping and vibration control features, considering environmental factors, and integrating with monitoring systems. By customizing belt tensioners, they can be optimized for specific applications, ensuring reliable performance and longevity in diverse operating conditions.
Can you describe the various types of belt tensioners, such as automatic or manual tensioners?
There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:
- Manual Belt Tensioners:
- Automatic Belt Tensioners:
- Hydraulic Belt Tensioners:
- Eccentric Belt Tensioners:
- Idler Pulley Tensioners:
Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.
Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.
Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.
Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.
Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.
In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.
Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.
editor by CX 2024-02-04
China Standard Suzuki Every Water Pump Timing Tensioner 12810-76g70 Timing Belt Tensioner cv axle repair
Product Description
Welcome to choose KORTON INDUSTRIAL LIMITED.
NO 1. our adwantages:
1. 14 years bearing products manufacturing and 4 years exporting experiences.
2. OEM order and non-standard bearing order can be accepted.
3. Our main bearing products include Deep groove ball bearings, tapered roller bearings, cylindrical roller bearings, spherical ball bearings, angular contact bearings, needle roller bearings, thrust ball bearings, spherical plain bearings, spherical bearings, automotive bearings pump bearings, and many nonstandard bearings are also in our product range.
4. Sample available
NO 2. Description: Auto wheel bearing
Race: we use the most advanced technology-cold extrusion process. Besides, the race will make 2 or 3 times temper to guarantee its high precision.
Rolling element: we use the rolling technology to process the roller and the steel ball of high precision bearing, the most advantage of our technology is to promote productive and productive efficiency. At the same time, our technology can prolong the bearing working life. The hardness and the diamention stability will also promote.
Steel cage: in order to avoid avoid cracks and guarantee the hardness, we use pattern “high temperature+long time”, our cage of high precision bearing have reached advanced level in china at surface abrasion resistance and fatigue strength.
NO 3. OEM all brand bearing
NO 4. Auto Wheel Bearing Specification:
Seals Types | ZZ,2RS,OPEN | ||||||||
Vibration Level | Z1V1,Z2V2,Z3V3 | ||||||||
Clearance | C2,C0,C3,C4,C5 | ||||||||
Tolerance Codes | ABEC-1,ABEC-3,ABEC-5 | ||||||||
Materral | GCr15-China/AISI521W | ||||||||
DAC30600037 | 30 | 60 | 37 | 37 | 0.42 | 529891AB | BA2B633313C | DAC3060W | |
DAC30620038 | 30 | 62 | 38 | 38 | 0.52 | 545312 | 418780 | 30BWD10 | |
DAC30630042 | 30 | 63 | 42 | 42 | 0.57 | 581736 | 45716A | 30BWD01A | |
DAC30640042 | 30 | 64 | 42 | 42 | 0.5 | 34BWD03ACA78 | DAC3064W2R | ||
DAC32720045 | 32 | 72 | 45 | 45 | 0.81 | 531910 | 32BWD05CA75 | ||
DAC34620037 | 34 | 62 | 37 | 37 | 0.41 | 561447 | BAHB311316B | 34BWD08/CA70 | |
DAC34640037 | 34 | 64 | 37 | 37 | 0.43 | 540466B | 3 0571 6DA | 34BWD11 | DAC3464G1 |
DAC34660037 | 34 | 66 | 37 | 37 | 0.5 | 580400CA | 636114A | 34BWD10B | |
DAC34670037 | 34 | 67 | 37 | 37 | 0.52 | 532066DB | |||
DAC34680037 | 34 | 68 | 37 | 37 | 0.55 | 567918B | DAC3468DW | ||
DAC35620040 | 35 | 62 | 40 | 40 | 0.43 | 430042C | |||
DAC35640037 | 35 | 64 | 37 | 37 | 0.41 | BT2B445620B | |||
DAC35650035 | 35 | 65 | 35 | 35 | 0.4 | 546238A | 443952 | DAC3565WCS30 | |
DAC35660033 | 35 | 66 | 33 | 33 | 0.43 | BAHB633676 | |||
DAC35660037 | 35 | 66 | 37 | 37 | 0.48 | 544307 | BAHB311309 | DAC35660037 | |
DAC35680033/30 | 35 | 68 | 33 | 30 | 0.47 | 546238 | BA2B445535AE | 35BWD07A | DAC3568W-6 |
DAC35680037 | 35 | 68 | 37 | 37 | 0.52 | 541153 | 633295 | DAC3568A2RS | |
DAC35720033 | 35 | 72 | 33 | 33 | 0.58 | 548083 | BA2B446762B | ||
DAC35725713/31 | 35 | 72 | 33 | 31 | 0.56 | 562686 | FWB14 | 35BWD06ACA111 | DAC357233B-1W |
DAC3572571 | 35 | 72 | 33 | 33 | 0.58 | 548083 | BAHB633669 | 35BWD08A | DAC357545CW2R |
DAC35720034 | 35 | 72 | 34 | 34 | 0.58 | 54 0571 | BAHB633967 | 35BWD01 | DAC357234A |
DAC3572571 | 35 | 72 | 34 | 34 | 0.58 | BAHB633528F | |||
DAC36640042 | 36 | 64 | 42 | 42 | 0.46 | CRI-0787 | |||
DAC36680033 | 36 | 68 | 33 | 33 | 0.47 | DAC3668AWCS36 | |||
DAC37720033 | 37 | 72 | 33 | 33 | 0.5 | BAH-0051B |
NO 6. Some Auto wheel bearing OEM number and Application:
OEM NUMBERS | DESCRIPTION | APPLICATION |
B001-33-043 | WHEEL BEARINGS | SPORTAGE |
04495-0K120 | WHEEL BEARINGS | HILUX’07 |
42409-19015 | WHEEL BEARING REAR | COROLLA |
42409-33571 | WHEEL BEARING REAR | CAMRY 1 |
90369-38011 | WHEEL BEARING FRONT | COROLLA 3872 |
43504-12090 | WHEEL HUB FRONT | COROLLA |
42409-2571 | WHEEL BEARING REAR | AVENSIS, CARINA |
43502-20131 | WHEEL HUB FRONT | CARINA |
44300-S3V-AO1 | WHEEL BEARINGS FRONT | TRUCK / LAND CRUISE |
42409-42571 | WHEEL BEARINGS REAR | RAV 4 |
518506 | WHEEL HUB FRONT | CAMRY |
175407615 | WHEEL HUB FRONT | GOLF 1 |
331598625 | WHEEL BEARING REAR | GOLF II |
3871 | WHEEL BEARING FRONT | TOY STARLET |
4382 | WHEEL BEARING | CAMRY |
90368-50008 | WHEEL BEARING | DYNA |
90369-32003 | WHEEL BEARING | RX80 FRONT |
45710-C6000 | WHEEL BEARING | NISSAN PATROL FRONT |
45710-50Y00-D | WHEEL BEARING | NISSAN SUNNY |
45710-71L00-D | WHEEL BEARING | NISSAN |
42200-SH3-970-D | WHEEL BEARING | HONDA CIVIC |
42300-SD4-004 | WHEEL BEARING | HONDA BALLADE |
43210-C9300-D | WHEEL BEARING | NISSAN PATROL |
43210-D5710-D | WHEEL BEARING | NISS-B/BIRD REAR |
44200-SM4-0131 | WHEEL BEARING | HONDA-CIVIC |
44300-SB2-965 | WHEEL BEARING | HONDA |
44300-S04-0040 | WHEEL BEARING | HONDA-CIVIC |
MB584761 | WHEEL BEARING | MITS-LANCER |
MB664447 | WHEEL BEARING | MITS-PAJERO |
46T080604 | WHEEL BEARING | COROLLA-REAR |
DG4 0571 6WRS/DG4094W | WHEEL BEARING REAR | HIACE 4X4 |
3874 | WHEEL BEARINGS | CORONA |
157148/10 | WHEEL BEARINGS | L/CRUISER |
104948/10 | WHEEL BEARINGS | L/CRUISER |
48548/10 | WHEEL BEARINGS | HIACE 2Y |
12649/10 | WHEEL BEARINGS | HIACE 2Y |
30303D | WHEEL BEARINGS | L/CRUISER |
4T-CR1-0881 | WHEEL BEARINGS | BLUEBIRD |
11162/ | WHEEL BEARINGS | LAND ROVER |
69345/10 | WHEEL BEARINGS | MAZDA 323 |
11749/10 | WHEEL BEARINGS | NISSAN 1400 |
35715 | WHEEL BEARINGS | MAZDA B1800 |
35714 | WHEEL BEARINGS | L/CRUISER |
67048/10 | WHEEL BEARINGS | CRESSIDA |
44649/10 | WHEEL BEARINGS | NISSAN 1400 |
45449/10 | WHEEL BEARINGS | COROLLA DX |
30849/10 | WHEEL BEARINGS | TOYOTA |
6308 | WHEEL BEARINGS | TOY HIACE |
U399 | WHEEL BEARINGS | TOY HILUX |
11949/10 | WHEEL BEARINGS | NISSAN 1400 |
30304 | WHEEL BEARINGS | L/CRUISER |
4080 | WHEEL BEARINGS | MITSUBISHI |
603049/10 | WHEEL BEARINGS | TOYOTA |
6306CNXL330 | GEAR BOX BEARINGS | NISSAN TD27 |
TR080702J | GEAR BOX BEARINGS | TOYOTA COROLLA |
3314598 | WHEEL BEARINGS | FORD RANGER |
DAC38640036 | WHEEL BEARINGS | TOYOTA COROLLA REAR |
TR070904-J-N | DIFF BEARINGS | L/CRUISER |
R30-13 | DIFF BEARINGS | L/CRUISER |
TR100802-I-N | DIFF BEARINGS | L/CRUISER |
42BWD06 | WHEEL BEARINGS | NISSAN BLUEBIRD |
46T 0571 05 | WHEEL BEARINGS | TOYOTA LUCIDA |
HM801310-22-N | DIFF BEARINGS | MITSUBISHI CANTER |
LM603049/10 | WHEEL BEARINGS | FORD/L/ROVER |
17831/17887 | DIFF BEARINGS | TOYOTA HIACE |
2788 | WHEEL BEARINGS | L/CRUISER |
26882 | WHEEL BEARINGS | L/CRUISER |
28985/28920 | DIFF BEARINGS | MITSUBISHI CANTER |
HM801349-N | DIFF BEARINGS | MITSUBISHI CANTER |
50KW8019 | DIFF BEARINGS | MITSUBISHI CANTER |
45289 | WHEEL BEARINGS | TOYOTA DYNA |
43BWD03 | WHEEL BEARINGS | TOYOTA MARK11 |
35BWD16 | WHEEL BEARINGS | NISSAN MARCH |
LM300811 | WHEEL BEARINGS | NISSAN 1TONNER |
LM60571 | WHEEL BEARINGS | NISSAN 1TONNER |
35712 | WHEEL BEARINGS | MITSUBISHI CANTER FRONT |
35718j/57307 | WHEEL BEARINGS | MITSUBISHI L200 REAR |
ST2749 | WHEEL BEARINGS | TOYOTA STARLET FRONT |
55KW02 | WHEEL BEARINGS | MITSUBISHI CZPT FRONT |
55KW01 | WHEEL BEARINGS | MITSUBISHI CZPT FRONT |
25KC802 | DIFF BEARINGS | L/CRUISER |
35BW08 | WHEEL BEARINGS | TOWNACE REAR |
32207 | WHEEL BEARINGS | MITSUBISHI CANTER FRONT |
DAC4380A | WHEEL BEARINGS | MAZDA 626 |
46T 0571 04A | WHEEL BEARINGS | TOYOTA CONDOR FRONT |
TR0708030 | DIFF BEARINGS | TOYOTA HIACE |
32012X | WHEEL BEARINGS | MITSUBISHI L200/CANTER REAR |
4276 | WHEEL BEARINGS | MITSUBISHI L200/CANTER REAR |
28580 | DIFF BEARINGS | TOYOTA COASTER |
3579R/25 | WHEEL BEARINGS | TOYOTA DYNA FRONT |
HR32210J | DIFF BEARINGS | MITSUBISHI CANTER |
HR32206J | WHEEL BEARINGS | NISSAN SUNNY |
HR35717J | DIFF BEARINGS | NISSAN |
DU5496-5 | WHEEL BEARINGS | TOYOTA HILUX |
40KW019 | WHEEL BEARINGS | MITSUBISHI CZPT FRONT |
TR0607R | DIFF BEARINGS | TOYOTA HIACE |
TR57326 | DIFF BEARINGS | TOYOTA COASTER |
2474 | DIFF BEARINGS | TOYOTA COASTER |
33013A | WHEEL BEARINGS | TOYOTA COASTER |
HR32307CN | DIFF BEARINGS | TOYOTA HILUX |
32310 | WHEEL BEARINGS | ISUZU LIGHT TRUCK |
40BWD12 | WHEEL BEARINGS | TOYOTA VISTA |
33205JR | WHEEL BEARINGS | TOYOTA VISTA |
LM300849 | WHEEL BEARINGS | NISSAN-DATSUN |
50KWH01 | WHEEL BEARINGS | MITSUBISHI SPORTERO |
40KW01 | DIFF BEARINGS | MITSUBISHI FUSO |
30305 | WHEEL BEARINGS | NISSAN |
32571XJ | WHEEL BEARINGS | NISSAN |
35718 | WHEEL BEARINGS | NISSAN |
32304 | WHEEL BEARINGS | ISUZU |
DAC43792RS | WHEEL BEARINGS | HONDA CRV |
40KWD02 | WHEEL BEARINGS | MITSUBISHI SPORTERO |
38BWD06 | WHEEL BEARINGS | TOYOTA MARK11 FRONT |
43KWD04 | WHEEL BEARINGS | NISSAN PRIMERA |
427638 | WHEEL BEARINGS | TOYOTA REGUS FRONT |
LM68149/10 | WHEEL BEARINGS | CROWN FRONT |
LM12749/10 | WHEEL BEARINGS | CROWN FRONT |
32005JR | WHEEL BEARINGS | MAZDA FRONT |
35BCD08 | WHEEL BEARINGS | TOYOTA NOAH REAR |
LM506810 | WHEEL BEARINGS | L/CRUISER |
ET33011 | WHEEL BEARINGS | NISSAN CABSTER |
RNU0727 | WHEEL BEARINGS | L/CRUISER |
46T08805 | WHEEL BEARINGS | MITSUBISHI PAJERO |
1220 | WHEEL BEARINGS | TOYOTA DYNA |
28584 | WHEEL BEARINGS | TOYOTA COASTER |
469-N | WHEEL BEARINGS | TOYOTA COASTER REAR |
28BWD01A | WHEEL BEARINGS | TOYOTA COROLLA REAR |
57305 | WHEEL BEARINGS | TOYOTA TOWNACE |
40BWD06 | WHEEL BEARINGS | MAZDA FRONT |
AU 0571 -2 | WHEEL BEARINGS | NISSAN X-TRAIL |
ME6 0571 4 | THRUST BEARING | MITS-4D30 |
30502-28E20 | THRUST BEARING | TD27 |
30502-53J00 | THRUST BEARING | GA16 |
31230-12140 | THRUST BEARING | EE90 |
31230-35070 | THRUST BEARING | TOY-3L |
31250-35050 | THRUST BEARING | TOY-2L |
31230-35090 | THRUST BEARING | TOY-5L |
31230-36160 | THRUST BEARING | TOY-1HZ |
31230-60130 | THRUST BEARING | TOY-1FZ |
MD703270 | THRUST BEARING | MITS-4D55 |
ME657110-D | THRUST BEARING | MITS-CANTER |
5712-16-222-D | THRUST BEARING | MAZ-HA |
31230-60120 | THRUST BEARING | TOY-2H |
31230-60150 | THRUST BEARING | TOY-FJ80 |
31230-32571 | THRUST BEARING | TOY-3S |
1304-16-510B | THRUST BEARING | MAZ-TITAN |
MD719469-D | THRUST BEARING | MITS-4D56 |
31230-36150 | THRUST BEARING | COASTER |
31230-32060 | THRUST BEARING | TOY-4AF |
58SCRN37P | THRUST BEARINGS | TOYOTA 1KZ |
Our factory:
Why Choose Us:
1,HangZhou CZPT bearing company has 14 years manufacture experience and is 1 of the biggest adjustment center in north of China.
2,We have large stock of original brand and our own brand bearing.
3,Sample is available.
4,We can accept OEM service.
HangZhou CZPT Bearing Co., Ltd. Was founded in March 2008. We were principally engaged in the research, development and manufacture of bearings in the early stage. Now we are mainly engaged in the sales of internationally-famous brand bearings. Our products are sold in Britain, America, Japan, Italy and Southeast Asia, well appreciated by their purchasers. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | 12 Months |
Type: | Auto Clutch Bearing |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you describe the various mounting options and installations for belt tensioners in different settings?
Mounting options and installations for belt tensioners can vary depending on the specific application and the belt-driven system’s design. Different settings may require different approaches to ensure proper alignment, tensioning, and functionality of the tensioner. Here’s a detailed description of the various mounting options and installations for belt tensioners in different settings:
- Fixed Mounting:
- Adjustable Mounting:
- Spring-Loaded Tensioners:
- Idler Pulley Tensioners:
- Hydraulic Tensioners:
- Overhead Tensioners:
- Combination Mounting:
The most common mounting option for belt tensioners is fixed mounting. In this configuration, the tensioner is rigidly attached to a stationary part of the system, such as the engine block or a structural component. Fixed mounting provides stability and ensures that the tensioner remains in a fixed position relative to the belt. It is widely used in automotive, industrial, and machinery applications.
In some applications, adjustable mounting options are preferred to accommodate variations in belt length, alignment, or tension requirements. Adjustable tensioners allow for fine-tuning of the tensioning force by enabling adjustments in the tensioner’s position. This can be achieved through slots, elongated holes, or adjustable brackets that provide flexibility in the tensioner’s placement. Adjustable mounting is beneficial when precise tension adjustment is necessary or when belt drives undergo frequent changes.
Spring-loaded tensioners are commonly used in belt-driven systems. These tensioners incorporate a spring mechanism that applies constant tension to the belt. Spring-loaded tensioners can be mounted in various configurations, including fixed or adjustable mounting. The spring mechanism compensates for belt elongation, wear, or thermal expansion, ensuring consistent tension throughout the belt’s operational life.
Idler pulley tensioners utilize an additional pulley to redirect the belt’s path and apply tension. The tensioner is typically mounted on an adjustable bracket or arm, allowing for precise positioning of the idler pulley relative to the belt. Idler pulley tensioners are often used in serpentine belt systems, where multiple accessories are driven by a single belt. Proper alignment and tensioning of the idler pulley are crucial for efficient power transmission and belt longevity.
Hydraulic tensioners employ a hydraulic cylinder or piston to apply tension to the belt. These tensioners are commonly used in applications where high tension forces or dynamic tension control is required. Hydraulic tensioners may have specific mounting requirements due to the need for hydraulic connections, such as hoses or fittings. They are often used in heavy-duty machinery, automotive engines, or other systems demanding precise tension control.
In certain settings, such as conveyor systems or overhead power transmission systems, belt tensioners may be mounted overhead. Overhead tensioners are typically suspended from a support structure, allowing the tensioner to apply tension to the belt from above. This configuration helps maximize space utilization and facilitates maintenance and belt replacement in vertically-oriented systems.
In complex belt-driven systems, a combination of mounting options may be employed. For example, a fixed tensioner may be used in one location, while an adjustable tensioner is used in another to accommodate different belt lengths or alignment requirements. Combination mounting allows for customized tensioning solutions tailored to the specific system design and operational needs.
It is important to note that the specific mounting option and installation for a belt tensioner will depend on the system’s design, space constraints, belt type, and the manufacturer’s recommendations. It is essential to follow the manufacturer’s guidelines and specifications for proper tensioner installation to ensure optimal performance and longevity of the belt-driven system.
In summary, the mounting options and installations for belt tensioners can include fixed mounting, adjustable mounting, spring-loaded tensioners, idler pulley tensioners, hydraulic tensioners, overhead tensioners, and combinations thereof. Each mounting option offers advantages and considerations depending on the application’s requirements and the specific belt-driven system’s design.
How do innovations and advancements in belt tensioner technology impact their use?
Innovations and advancements in belt tensioner technology have a significant impact on their use, enhancing performance, reliability, and versatility. These advancements introduce new features, improve functionality, and address specific challenges associated with belt-driven systems. Here’s a detailed explanation of how innovations and advancements in belt tensioner technology impact their use:
- Improved Tensioning Mechanisms:
- Enhanced Durability:
- Increased Compatibility:
- Noise and Vibration Reduction:
- Advanced Monitoring and Diagnostic Capabilities:
- Integration with System Controls:
New tensioning mechanisms and designs have been developed to provide more precise and efficient tension control. Innovations such as automatic tensioners or self-adjusting tensioners utilize advanced mechanisms that can continuously monitor and adjust the tension in real-time. This improves the overall performance and reliability of belt-driven systems, as the tension can be accurately maintained even under varying loads and operating conditions.
Advancements in materials and manufacturing techniques have contributed to the development of more durable belt tensioners. High-strength alloys, advanced polymers, and specialized coatings are used to increase the resistance to wear, corrosion, and fatigue. These improvements extend the service life of belt tensioners, reducing the frequency of maintenance and replacement and improving the overall reliability of belt-driven systems.
Innovations in belt tensioner technology have led to increased compatibility with a wide range of belt drive systems. Manufacturers have developed adjustable tensioners that can accommodate different belt widths, profiles, and types. This versatility allows for easier integration and replacement of tensioners in various industrial or automotive applications, reducing the need for custom solutions and simplifying maintenance and repairs.
New technologies and designs have been introduced to minimize noise and vibration generated by belt tensioners. Innovative damping materials, improved bearing systems, and optimized geometries help reduce noise and vibration levels, resulting in quieter and smoother operation. This is particularly beneficial in applications where noise reduction and operator comfort are essential.
Advancements in belt tensioner technology have facilitated the integration of monitoring and diagnostic capabilities. Smart tensioners equipped with sensors and connectivity features can provide real-time data on tension levels, temperature, and other operating parameters. This enables predictive maintenance, early fault detection, and optimized performance. By leveraging data-driven insights, operators can make informed decisions, improve system efficiency, and prevent unexpected failures.
Innovative belt tensioner technologies can be integrated with system controls and automation platforms. This allows for seamless integration into larger control systems, enabling automated tension adjustments, synchronization with other components, and coordinated operation. The integration of belt tensioners with system controls enhances system performance, efficiency, and overall productivity.
In summary, innovations and advancements in belt tensioner technology have a significant impact on their use. These advancements improve tensioning mechanisms, enhance durability, increase compatibility, reduce noise and vibration, enable advanced monitoring and diagnostics, and facilitate integration with system controls. By incorporating these innovations, belt tensioners offer improved performance, reliability, and versatility, leading to enhanced efficiency and reduced maintenance requirements in various industrial and automotive applications.
How do belt tensioners differ from other components in maintaining belt tension?
Belt tensioners play a distinct role in maintaining belt tension compared to other components in belt drive systems. Here’s a detailed explanation of how belt tensioners differ from other components:
1. Tension Adjustment:
Belt tensioners are specifically designed to provide an adjustable means of maintaining the proper tension in the belt. They are equipped with mechanisms such as springs, adjustable arms, or brackets that allow for easy tension adjustment. Other components in belt drive systems, such as pulleys or idlers, do not have this specific functionality and rely on external means, such as manual adjustment or fixed positioning, to maintain tension.
2. Active Tension Control:
Belt tensioners actively control and apply force to the belt to maintain tension. They are designed to compensate for belt elongation, thermal expansion, and other factors that can affect tension over time. By applying the appropriate tension, belt tensioners help to prevent belt slippage and maintain efficient power transmission. In contrast, other components, such as fixed pulleys or idlers, do not actively control tension and rely on the initial tension set during installation.
3. Dynamic Tension Compensation:
Belt tensioners are capable of dynamically adjusting the tension in response to changes in operating conditions. For example, in automotive applications, belt tensioners can compensate for variations in engine speed, temperature fluctuations, and belt wear. They can adapt to these changes and maintain the optimal tension level. Other components, such as fixed pulleys or idlers, do not possess this dynamic tension adjustment capability.
4. Vibration and Noise Damping:
Belt tensioners often incorporate features to dampen vibrations and reduce noise in the belt drive system. They act as shock absorbers, absorbing and dissipating vibrations, which helps to minimize belt flutter and reduce noise levels. Other components, such as fixed pulleys or idlers, do not typically have built-in vibration and noise damping properties.
5. Positioning on Slack Side:
Belt tensioners are typically positioned on the slack side of the belt, between the driving pulley and the driven pulley. This positioning allows them to apply tension to the belt where it is needed most, helping to maintain proper engagement and prevent slippage. In contrast, other components, such as fixed pulleys or idlers, are positioned on the tight side of the belt and primarily serve to guide and support the belt.
6. Component Integration:
Belt tensioners are standalone components that are specifically designed for tensioning belts. They are often integrated into the belt drive system as a separate unit, allowing for easy installation, adjustment, and replacement. Other components, such as pulleys or idlers, serve different functions in the system and may be integrated into other mechanisms or structures.
In summary, belt tensioners differ from other components in belt drive systems in their ability to provide adjustable tension control, dynamic tension compensation, vibration and noise damping capabilities, specific positioning on the slack side of the belt, and as standalone components designed solely for tensioning belts. These features make belt tensioners essential for maintaining optimal tension and ensuring the efficient and reliable operation of belt drive systems.
editor by CX 2024-01-05