Product Description
MIC NO. | OEM.NO | APPLICATION | YEAR | PHOTO |
TB34OP9301 | 951163 9 0571 884 1206990 |
OPEL ASTRA F (T92) 1.6 i 16V (F19, M19) OPEL ASTRA F CLASSIC Estate (T92) 1.6 i 16V (F35, M35) OPEL ASTRA F CLASSIC Hatchback (T92) 1.6 i 16V (F08, M08, F68, M68) OPEL ASTRA F CLASSIC Saloon (T92) 1.6 i 16V (F19, M19) OPEL ASTRA F Convertible (T92) 1.4 i 16V OPEL ASTRA F Estate (T92) 1.4 i 16V (F35, M35) OPEL ASTRA F Estate (T92) 1.6 i 16V (F35, M35) OPEL ASTRA F Hatchback (T92) 1.4 i 16V (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 1.6 i 16V (F08, M08, F68, M68) OPEL ASTRA F Van (T92) 1.6 i 16V (F70) OPEL CORSA B (S93) 1.4 i 16V (F08, F68, M68) OPEL CORSA B (S93) 1.6 GSI 16V (F08, F68, M68) OPEL CORSA B (S93) 1.6 i 16V (F08, F68, M68) OPEL CORSA B Estate (S93) 1.4 i 16V (F35) OPEL TIGRA (S93) 1.4 16V (F07) OPEL TIGRA (S93) 1.6 16V (F07) |
1994-1998 1998-2005 1998-2002 1998-2002 1996-2001 1996-1998 1994-1998 1996-1998 1994-1998 1994-1998 1994-2000 1993-2000 1994-2000 1999-2002 1994-2000 1994-1998 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year |
Car Make: | OPEL |
Car Model: | ASTRA F (T92) 1.6 i 16V (F19, M19) |
MOQ: | 100 PCS |
Sample: | Available |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do belt tensioners enhance the overall efficiency and lifespan of belts in various applications?
Belt tensioners play a crucial role in enhancing the overall efficiency and lifespan of belts in various applications. They are designed to maintain proper tension in the belt, ensuring optimal power transmission, minimizing slippage, and reducing wear. Here’s a detailed explanation of how belt tensioners enhance efficiency and lifespan:
- Optimal Tension:
- Compensating for Belt Stretch:
- Reduced Slippage:
- Improved Belt Life:
- Reduced Maintenance:
- Noise and Vibration Reduction:
Belt tensioners are responsible for maintaining the correct tension in the belt. Proper tension is essential for efficient power transmission and preventing belt slippage. By applying the right amount of tension, belt tensioners ensure that the belt remains securely engaged with the pulleys, allowing for efficient transfer of power. This optimal tension minimizes energy losses, improves system efficiency, and reduces the risk of premature belt wear or failure due to inadequate tension.
Belts can stretch over time due to various factors such as normal wear, temperature changes, or load variations. Belt tensioners are designed to compensate for belt stretch by automatically adjusting the tension as needed. This feature helps maintain consistent belt tension and ensures proper power transmission, even as the belt elongates over its service life. By compensating for belt stretch, tensioners prevent slack in the belt, reduce the risk of belt jumping or misalignment, and extend the lifespan of the belt.
Slippage between the belt and the pulleys can lead to power loss, decreased efficiency, and accelerated belt wear. Belt tensioners help reduce slippage by maintaining the appropriate tension in the belt. The tensioner applies sufficient force to keep the belt tightly engaged with the pulleys, preventing slip under normal operating conditions. This enhanced grip improves power transmission efficiency, ensures accurate timing in timing belt applications, and minimizes the risk of belt-related issues caused by slippage.
Proper tension and reduced slippage provided by belt tensioners contribute to an extended lifespan of belts. By maintaining the correct tension, tensioners minimize the stress and strain on the belt, reducing the likelihood of premature wear or failure. They help distribute the load evenly across the belt, reducing localized wear and increasing the overall durability of the belt. Additionally, by preventing belt slippage, tensioners minimize the frictional forces that can cause heat buildup and accelerated belt degradation. This results in improved belt life and reduced maintenance costs.
Belt tensioners help reduce the need for frequent belt adjustments and maintenance. With a properly tensioned belt, the risk of belt-related issues such as misalignment, excessive wear, or premature failure is minimized. This reduces the frequency of belt replacements or adjustments, resulting in reduced maintenance downtime and costs. Belt tensioners also contribute to overall system reliability by ensuring consistent performance, reducing the need for frequent manual interventions or re-tensioning.
Improper tension or slippage in belts can lead to excessive noise and vibrations in the system. Belt tensioners help mitigate these issues by maintaining the correct tension and reducing slippage. By ensuring proper belt engagement, tensioners minimize noise generation and vibration levels, enhancing the overall comfort and performance of the system.
In summary, belt tensioners enhance the overall efficiency and lifespan of belts by maintaining optimal tension, compensating for belt stretch, reducing slippage, improving belt life, reducing maintenance needs, and minimizing noise and vibrations. By ensuring proper tension and reducing wear, belt tensioners contribute to efficient power transmission, extended belt life, and improved reliability of belt-driven systems in various applications.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
Can you explain the importance of proper belt tensioning in machinery and automotive applications?
Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here’s a detailed explanation of the importance of proper belt tensioning:
- Power Transmission Efficiency:
- Belt Life and Reliability:
- Reduced Noise and Vibration:
- Optimal Load Distribution:
- Improved Safety:
Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.
Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.
Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.
The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.
Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.
In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.
editor by CX 2023-12-19
China Best Sales Senpei Auto Spare Car Parts Belt Tensioner Assembly W/ Pulley for Land Rover Lr2 2012 2013-2017 L4 2.0L OEM Lr034128 axle car repair
Product Description
Senpei auto spare car parts Belt Tensioner Assembly w/ Pulley for Land Rover LR2 2012 2013-2017 L4 2.0L OEM LR034128
FQA:
Q1.Where is your company?
A: Our Head Office are located in HangZhou City, ZheJiang Province, China(Mainland);
Q2. What is your terms of packing?
A: Generally, we pack our goods in SENP boxes or neutral boxes
Q3. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q4. What is your terms of delivery?
A: EXW, FOB,
Q5. How about your delivery time?
A: Generally, it will take about 20 days after receiving your deposit. The specific delivery time depends on the items and the
quantity of your order.
Q6. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q7. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier costs.
Q8. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q9. How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers’ benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
After-sales Service: | Online Technical Support |
---|---|
Warranty: | 2 Year |
Car Make: | Audi |
Car Model: | Audi |
Engine Type: | Audi |
Product Name: | Belt Tensioner |
Samples: |
US$ 44/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you provide guidance on the selection and sizing of belt tensioners for specific belt applications?
When selecting and sizing belt tensioners for specific belt applications, several factors need to be considered to ensure optimal performance and longevity. Here’s a detailed guidance on the selection and sizing of belt tensioners:
- Belt Type and Size:
- System Requirements:
- Tensioner Type:
- Tensioner Design and Mounting:
- Tensioner Load Capacity:
- Environmental Considerations:
- Manufacturer Recommendations:
Start by identifying the type and size of the belt used in the application. Belts can vary in terms of width, length, profile (V-belt, timing belt, etc.), and construction material (rubber, polyurethane, etc.). The tensioner should be compatible with the specific belt type and size to ensure proper fit and functionality.
Consider the requirements of the belt-driven system. Evaluate factors such as the desired tension level, operating speed, load conditions, and environmental factors. The tensioner should be capable of providing the required tension force while accommodating the system’s operating parameters.
Choose the appropriate tensioner type based on the application’s needs. Common types include automatic tensioners, idler pulley tensioners, spring-loaded tensioners, and hydraulic tensioners. Each type has its advantages and limitations, so select the one that best suits the specific belt application.
Consider the design and mounting requirements of the tensioner. Evaluate the space availability, mounting configuration, and alignment with other components in the belt drive system. Some tensioners offer adjustable mounting positions or different design variations to accommodate various installation scenarios.
Check the load capacity of the tensioner to ensure it can handle the expected loads and forces in the belt system. Consider factors such as the belt tension, shock loads, and dynamic forces. The tensioner should have adequate load capacity to prevent premature wear or failure under normal operating conditions.
Assess the environmental conditions in which the tensioner will operate. Factors such as temperature extremes, moisture, dust, chemicals, and exposure to UV radiation can impact the tensioner’s performance and durability. Choose a tensioner that is designed to withstand the specific environmental challenges of the application.
Refer to the manufacturer’s guidelines and recommendations for selecting and sizing the tensioner. Manufacturers often provide technical data, specifications, and selection guides that assist in choosing the appropriate tensioner for specific belt applications. Follow their recommendations to ensure compatibility and optimal performance.
It is important to note that the selection and sizing of belt tensioners may require technical expertise and consideration of specific application requirements. If in doubt, consult with belt tensioner manufacturers or industry experts who can provide further guidance based on their knowledge and experience.
In summary, when selecting and sizing belt tensioners for specific belt applications, consider the belt type and size, system requirements, tensioner type, design and mounting, load capacity, environmental conditions, and manufacturer recommendations. By carefully evaluating these factors, you can choose a suitable tensioner that ensures proper tensioning, reliable operation, and extended belt life in the belt-driven system.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
How do belt tensioners differ from other components in maintaining belt tension?
Belt tensioners play a distinct role in maintaining belt tension compared to other components in belt drive systems. Here’s a detailed explanation of how belt tensioners differ from other components:
1. Tension Adjustment:
Belt tensioners are specifically designed to provide an adjustable means of maintaining the proper tension in the belt. They are equipped with mechanisms such as springs, adjustable arms, or brackets that allow for easy tension adjustment. Other components in belt drive systems, such as pulleys or idlers, do not have this specific functionality and rely on external means, such as manual adjustment or fixed positioning, to maintain tension.
2. Active Tension Control:
Belt tensioners actively control and apply force to the belt to maintain tension. They are designed to compensate for belt elongation, thermal expansion, and other factors that can affect tension over time. By applying the appropriate tension, belt tensioners help to prevent belt slippage and maintain efficient power transmission. In contrast, other components, such as fixed pulleys or idlers, do not actively control tension and rely on the initial tension set during installation.
3. Dynamic Tension Compensation:
Belt tensioners are capable of dynamically adjusting the tension in response to changes in operating conditions. For example, in automotive applications, belt tensioners can compensate for variations in engine speed, temperature fluctuations, and belt wear. They can adapt to these changes and maintain the optimal tension level. Other components, such as fixed pulleys or idlers, do not possess this dynamic tension adjustment capability.
4. Vibration and Noise Damping:
Belt tensioners often incorporate features to dampen vibrations and reduce noise in the belt drive system. They act as shock absorbers, absorbing and dissipating vibrations, which helps to minimize belt flutter and reduce noise levels. Other components, such as fixed pulleys or idlers, do not typically have built-in vibration and noise damping properties.
5. Positioning on Slack Side:
Belt tensioners are typically positioned on the slack side of the belt, between the driving pulley and the driven pulley. This positioning allows them to apply tension to the belt where it is needed most, helping to maintain proper engagement and prevent slippage. In contrast, other components, such as fixed pulleys or idlers, are positioned on the tight side of the belt and primarily serve to guide and support the belt.
6. Component Integration:
Belt tensioners are standalone components that are specifically designed for tensioning belts. They are often integrated into the belt drive system as a separate unit, allowing for easy installation, adjustment, and replacement. Other components, such as pulleys or idlers, serve different functions in the system and may be integrated into other mechanisms or structures.
In summary, belt tensioners differ from other components in belt drive systems in their ability to provide adjustable tension control, dynamic tension compensation, vibration and noise damping capabilities, specific positioning on the slack side of the belt, and as standalone components designed solely for tensioning belts. These features make belt tensioners essential for maintaining optimal tension and ensuring the efficient and reliable operation of belt drive systems.
editor by CX 2023-12-11
China OEM Auto Parts Engine Belt Tensioner 278950 for Maserati Quattroporte Ghibli Levante with Best Sales
Product Description
Product Description
OuChai NO. | Oem NO. | Application | Size |
OCT-T9045 | 278950 | Maserati | 65*20 |
Introducing the Auto Parts Engine Belt Tensioner 278950, specifically designed for Maserati Quattroporte, Ghibli, and Levante models. This high-quality tensioner is an essential component for ensuring optimal performance and longevity of your vehicle’s engine belt system.
Crafted with precision and expertise, this belt tensioner guarantees a perfect fit and seamless integration into your Maserati. Engineered to meet the highest industry standards, it is a reliable and durable solution for maintaining the proper tension of your engine belt, preventing slippage and ensuring smooth operation.
The Auto Parts Engine Belt Tensioner 278950 features a belt pulley, tape CZPT pulley, and tensioning pulley, all meticulously designed to provide maximum efficiency and functionality. The belt pulley ensures proper alignment and smooth rotation of the engine belt, while the tape CZPT pulley guides the belt along its designated path, minimizing wear and tear. The tensioning pulley, on the other hand, maintains the optimal tension of the belt, preventing any slack that could lead to performance issues.
With its exceptional build quality and performance, this belt tensioner is a perfect replacement for your worn-out or faulty tensioner. It is designed to withstand the rigors of daily use and deliver consistent performance, ensuring your Maserati operates at its CZPT potential.
Investing in the Auto Parts Engine Belt Tensioner 278950 means investing in the reliability and longevity of your Maserati. With its precise engineering and superior materials, this tensioner guarantees a perfect fit, easy installation, and long-lasting performance.
Upgrade your Maserati’s engine belt system with the Auto Parts Engine Belt Tensioner 278950 and experience the difference in performance and reliability. Trust in our expertise and choose a product that meets the highest industry standards.
Certifications
Company Profile
HangZhou OUCHAI TECHNOLOGY CO.,LTD is located in Kunyang Nailali Industrial Zone, Xihu (West Lake) Dis., HangZhou. Our factory is a professional manufacturer of producing belt tensioner with designing and selling.
Our company was founded in 2014, with RMB 3 million registered capital, and covers an area 2000 square meters. There are 30 workers in our factory, including 2 engineers and 6 technicians.
Our company fully implement IATF16949 quality management system and own the advanced production equipment, such as CNC lathe, punching machine, die-casting machine, assembly line and testing equipment.
Our products mainly exported to European, America and South East, and deeply praised by customers. We always adhere to the principle of “integrity is foundation, quality is first, CZPT cooperation” and we’ll move forward all the way.
Detailed Photos
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Car Make: | Maserati |
Samples: |
US$ 12/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What are the reliability and durability aspects of belt tensioners in ensuring consistent belt tension?
Belt tensioners play a crucial role in ensuring consistent belt tension in belt-driven systems. The reliability and durability of belt tensioners are essential factors in maintaining optimal belt performance and preventing issues such as slippage, excessive wear, or premature failure. Here’s a detailed explanation of the reliability and durability aspects of belt tensioners in ensuring consistent belt tension:
- Design and Construction:
- Load Capacity:
- Resistance to Wear and Fatigue:
- Corrosion and Contamination Resistance:
- Temperature Stability:
- Lubrication and Friction Management:
- Maintenance and Inspection:
The design and construction of belt tensioners are critical for their reliability and durability. High-quality materials, precision engineering, and robust construction techniques are employed to ensure that tensioners can withstand the forces and loads encountered in belt-driven systems. The design should incorporate features that minimize stress concentrations, prevent premature wear, and provide long-lasting performance.
Belt tensioners must have adequate load capacity to handle the tension forces exerted by the belt system. A properly sized tensioner will allow for the consistent application of the desired tension level, even under varying loads and operating conditions. Insufficient load capacity can lead to insufficient tension, resulting in belt slippage, reduced power transmission, and potential system failure.
Reliable belt tensioners are designed to resist wear and fatigue over extended periods of operation. They should be able to withstand the continuous movement and contact with the belt without experiencing excessive wear or deformation. High-quality materials, surface treatments, and lubrication mechanisms may be employed to enhance the tensioner’s resistance to wear and fatigue.
Belt tensioners in certain environments may be exposed to corrosive substances, moisture, or contaminants such as dust and debris. To ensure reliability and durability, tensioners can be designed with corrosion-resistant materials, protective coatings, or sealing mechanisms. These features help prevent the degradation of tensioner components and maintain their performance in challenging operating conditions.
Temperature fluctuations can affect the performance and longevity of belt tensioners. Reliable tensioners are engineered to withstand the temperature extremes commonly encountered in industrial or automotive applications. They may incorporate materials with high-temperature resistance or thermal management mechanisms to maintain consistent performance and prevent thermal degradation.
Proper lubrication and friction management are crucial for the reliable operation of belt tensioners. Lubricants or bearing configurations are employed to minimize friction, reduce wear, and prevent premature failure. Adequate lubrication and friction management contribute to the consistent operation and longevity of the tensioner, ensuring optimal belt tension over time.
Regular maintenance and inspection are essential for ensuring the reliability and durability of belt tensioners. Periodic checks for signs of wear, proper alignment, and tension adjustment are necessary to identify potential issues and take corrective measures. Following the manufacturer’s recommended maintenance schedule and procedures helps prolong the life of the tensioner and maintain consistent belt tension.
In summary, the reliability and durability of belt tensioners are crucial for ensuring consistent belt tension in belt-driven systems. The design and construction of tensioners, their load capacity, resistance to wear and fatigue, corrosion and contamination resistance, temperature stability, lubrication and friction management, as well as regular maintenance and inspection, all contribute to their ability to maintain optimal belt tension over time. By selecting high-quality tensioners and following proper maintenance practices, consistent belt tension can be achieved, leading to reliable and efficient operation of belt-driven systems.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
Can you describe the various types of belt tensioners, such as automatic or manual tensioners?
There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:
- Manual Belt Tensioners:
- Automatic Belt Tensioners:
- Hydraulic Belt Tensioners:
- Eccentric Belt Tensioners:
- Idler Pulley Tensioners:
Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.
Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.
Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.
Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.
Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.
In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.
Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.
editor by CX 2023-11-20
China supplier Vkm62002 Auto Timing Chain Belt Tensioner Pulley for CZPT 11955-6n202 11955-6n20b 11955-8j000 11955-Ja00b manufacturer
Product Description
Detailed Photos
VKM62
ROVER : PQG 1A
GATES : T38242
HK : H481
HUTCHINSON : T5711
INA : F210685100
BMW : 11281717188
BMW : 1717188
DAYCO : APV3571
INA : 534 0571 1
RUVILLE : 56987
LEXUS : 166200Y571
LEXUS : 166257171
TOYOTA : 166200Y571
TOYOTA : 166257171
DAYCO : APV2784
FEBI BILSTEIN : 31255
GATES : T38278
INA :
HONDA : 31170-PNA-003
HONDA : 31170-PNA-013
HONDA : 31170-PNA-571
INA :
IPD : 15-3557
JAPANPARTS : TS-H02
JAPKO : 128H02
KM International : FI16960
HYUNDAI : 25281-37101
HYUNDAI : 25281-37120
KIA : 2528137101
DAYCO : APV2996
GATES : 38489
GATES : T38489
HUTCHINSON : T0428
INA : 534571610
SUBARU : 23769AA000
SUBARU : 23769AA001
SUBARU : 23769AA002
SUBARU : 23769AA003
INA :
IPD : 15-4234
JAPANPARTS : BE-342
KAVO PARTS : DTE-4532
FORD : 1449043
FORD : 6M34 6K254 AA
MAZDA : WE01-12-700
Advantages
1. Customized Brand
2. High quality
3. Competitive price
4. On-time delivery
5. CZPT color box packing or according to the client’s requirements
6. More reliable and stable, durable in use, long operating life
7. Genuine parts, strict QC system, quality guarantee
8. Durable use
9. Adopted superior material, ensure the product has a super hardness, high impact resistance, and abrasion resistance
What we can do?
To help customers save time and cost, we supply a one-stop service.
1. select qualified product factory
2. gather goods from different factory
3. inspect the quality
4. shipping service
5. design service, we have professional designers who can help customers design the package.
Belt Tensioner, belt tensioner pulley, timing belt tensioner, automatic belt tensioner, belt pulley, timing pulley, idler pulley, engine pulley, idler pulley assembly, tensioner & idler pulley, belt idler pulley, drive belt idler, pulley, tensioner, tensioner bearing, tensioner bearing replacement
Company Profile
We are a professional supplier of auto bearings, our products include wheel bearing, hub assembly, clutch release bearing, belt tensioner, etc. We supply one-stop service for customers. To help customers save time and cost, we will help customers gather products from many different suppliers and inspect the quality. If you have any demand, please contact us in time, we will ensure the best price and the highest quality
Packaging & Shipping
Packaging Details | 1 piece in a single box 50 boxes in a carton 20 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <200 pcs: 15-30 days ≥200 pcs: to be negotiated. |
FAQ
If you have any other questions, please feel free to contact us as follows:
Q: Why did you choose us?
1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.
2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.
Q: Do you accept small orders?
100% quality check, once your bearings are standard size bearings, even one, we also accept.
Q: How long is your delivery time?
Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.
Q: Do you provide samples? Is it free or extra?
Yes, we can provide a small number of free samples.
Q: What should I do if I don’t see the type of bearings I need?
We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.
Q: Could you accept OEM and customize it?
A: Yes, we can customize for you according to the sample or drawing, but, pls provide us technical data, such as dimensions and marks.
Contact Us
After-sales Service: | 1 Year / 30000-50000kms |
---|---|
Warranty: | 1 Year / 30000-50000kms |
Type: | Tensioner Bearing |
Material: | Chrome Steel |
Tolerance: | P0/P6/P5 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What is the role of belt tensioner materials and coatings in performance and longevity?
Belt tensioner materials and coatings play a crucial role in the performance and longevity of belt tensioners. The choice of materials and coatings directly impacts the tensioner’s ability to withstand the forces and loads encountered in belt-driven systems, resist wear and corrosion, and maintain consistent performance over time. Here’s a detailed explanation of the role of belt tensioner materials and coatings in performance and longevity:
- Strength and Durability:
- Wear Resistance:
- Corrosion Resistance:
- Friction Reduction:
- Temperature Stability:
- Lubrication Enhancement:
- Noise and Vibration Damping:
The materials used in belt tensioners need to possess high strength and durability to withstand the mechanical stresses and loads imposed on them. Tensioner components are subjected to continuous movement and contact with the belt, which can lead to wear, fatigue, and potential failure. High-strength materials, such as hardened steels or alloys, are commonly used to ensure the tensioner’s structural integrity and longevity.
Belt tensioners are exposed to friction and wear as they come into contact with the belt during operation. Materials with excellent wear resistance properties, such as hardened surfaces or wear-resistant coatings, are employed to minimize the wear rate and extend the tensioner’s lifespan. These materials and coatings help maintain optimal contact between the tensioner and the belt, reducing the risk of belt slippage and premature failure.
In certain environments, belt tensioners may be exposed to corrosive substances, moisture, or contaminants, which can lead to corrosion and degradation of the tensioner components. Corrosion-resistant materials, such as stainless steel or corrosion-resistant alloys, are often utilized to protect the tensioner against corrosive elements. Additionally, coatings like zinc plating or other protective finishes can be applied to enhance the tensioner’s corrosion resistance.
Reducing friction between the tensioner and the belt is essential for minimizing wear and maintaining consistent tension. Materials or coatings with low friction coefficients can help reduce the frictional forces and energy losses associated with the tensioner’s operation. By reducing friction, these materials and coatings contribute to improved efficiency, reduced heat generation, and increased longevity of the tensioner and the entire belt-driven system.
Belt tensioners are exposed to a wide range of operating temperatures, including both high and low extremes. Materials with good temperature stability and resistance to thermal degradation are essential for reliable tensioner performance. Heat-resistant alloys, high-temperature plastics, or thermal barrier coatings may be utilized to ensure that the tensioner maintains its mechanical properties and functionality under elevated temperatures.
Some tensioner materials or coatings are designed to enhance lubrication and reduce friction between moving parts. They may have self-lubricating properties or be compatible with specific lubricants used in the belt-driven system. These materials and coatings help reduce wear, heat generation, and the need for external lubrication, contributing to improved performance and extended longevity of the tensioner.
Belt tensioners can generate noise and vibration during operation, which can affect the comfort and performance of the belt-driven system. Certain materials or coatings can help dampen vibrations and reduce noise levels, improving the overall system’s performance and minimizing potential issues associated with excessive noise or vibrations.
In summary, the choice of belt tensioner materials and coatings is critical for ensuring optimal performance and longevity. Materials with high strength and durability, wear resistance, corrosion resistance, friction reduction, temperature stability, lubrication enhancement, and noise/vibration damping properties contribute to the tensioner’s ability to withstand the operational demands of belt-driven systems. By selecting appropriate materials and coatings, manufacturers can enhance the reliability, durability, and overall efficiency of belt tensioners, leading to extended service life and improved performance of the belt-driven systems they are used in.
What are the typical signs of improper belt tension, and how can belt tensioners address these issues?
Improper belt tension can lead to various issues in belt-driven systems. Recognizing the signs of improper tension is crucial for identifying and addressing potential problems. Belt tensioners play a crucial role in addressing these issues by adjusting and maintaining the proper tension in the belts. Here’s a detailed explanation of the typical signs of improper belt tension and how belt tensioners can address these issues:
- Slippage:
- Excessive Wear:
- Noise and Vibration:
- Overheating:
- Premature Belt Failure:
- Reduced Power Transmission Efficiency:
Slippage occurs when the belt slips on the pulleys instead of maintaining a firm grip. It can be caused by insufficient tension. Signs of slippage include a noticeable decrease in power transmission efficiency, a burning smell from friction, or visible wear on the belt and pulleys. Belt tensioners address slippage by applying the necessary force to increase the tension, improving the grip between the belt and the pulleys and minimizing slippage.
Improper tension can cause excessive wear on belts, pulleys, and other components. Insufficient tension may lead to belt slipping, resulting in accelerated wear. On the other hand, excessive tension can cause excessive stress and strain on the belt, leading to premature wear and potential damage. Belt tensioners help address excessive wear by adjusting the tension to the manufacturer’s recommended range, ensuring proper belt engagement and minimizing wear on the belt and associated components.
Improper belt tension can contribute to increased noise and vibration levels in the system. Insufficient tension may cause belt flapping or fluttering, leading to vibrations and noise. Excessive tension can create excessive forces and induce resonance, resulting in vibrations and noise as well. Belt tensioners address these issues by maintaining the correct tension, minimizing belt movement, reducing vibrations, and lowering noise levels, resulting in smoother and quieter operation.
Inadequate belt tension can cause overheating due to increased friction between the belt and the pulleys. Overheating may manifest as excessive heat radiating from the belt or pulleys, discoloration of the belt, or even belt degradation. Belt tensioners help address overheating by maintaining the proper tension, ensuring efficient power transmission and minimizing friction, which in turn reduces heat generation and helps prevent overheating issues.
Improper tension significantly increases the risk of premature belt failure. Insufficient tension can lead to belt slippage, accelerated wear, and reduced belt lifespan. Excessive tension can cause excessive stress and fatigue, leading to belt breakage or premature damage. Belt tensioners address these issues by maintaining the correct tension, distributing the load evenly across the belt, minimizing stress, and promoting longer belt life.
Improper belt tension can result in reduced power transmission efficiency. Insufficient tension leads to belt slipping, reducing the amount of power transferred from the driving pulley to the driven pulley. Excessive tension can cause increased friction and energy losses. Belt tensioners address these issues by ensuring the proper tension, maximizing the grip between the belt and the pulleys, and optimizing power transmission efficiency.
In summary, improper belt tension can manifest through signs such as slippage, excessive wear, noise and vibration, overheating, premature belt failure, and reduced power transmission efficiency. Belt tensioners address these issues by adjusting the tension to the recommended range, minimizing slippage, reducing wear, damping vibrations, preventing overheating, promoting longer belt life, and optimizing power transmission efficiency. Regular inspection and adjustment of belt tension using appropriate tensioners are essential for maintaining optimal belt performance and preventing potential issues.
What is a belt tensioner, and what role does it play in mechanical systems?
A belt tensioner is a mechanical component used in belt drive systems to maintain proper tension in the belt. It plays a crucial role in ensuring efficient power transmission, preventing belt slippage, and extending the lifespan of the belt and other related components. Here’s a detailed explanation of the belt tensioner and its role in mechanical systems:
A belt tensioner is typically a pulley or idler mechanism that is designed to apply force on the belt to maintain the desired tension. It is usually mounted on an adjustable arm or bracket, allowing for easy tension adjustment. The tensioner is positioned in such a way that it applies pressure to the belt on the slack side, which is the portion of the belt between the driving pulley and the driven pulley.
The primary role of a belt tensioner is to compensate for any stretching or elongation of the belt that may occur over time due to wear, temperature changes, or other factors. By maintaining the proper tension in the belt, the tensioner helps to prevent belt slippage, which can lead to a loss of power transmission efficiency and potential damage to the belt and pulleys.
In addition to maintaining tension, a belt tensioner also helps to dampen vibrations and reduce noise in the belt drive system. It acts as a shock absorber, absorbing and dissipating vibrations and preventing excessive belt flutter or oscillation. This contributes to smoother operation and improved system reliability.
Furthermore, a belt tensioner assists in prolonging the lifespan of the belt and other components in the drive system. Adequate tension reduces the risk of premature wear and fatigue on the belt, pulleys, and bearings. It also helps to distribute the load evenly across the belt, minimizing localized stress and ensuring optimal power transmission.
When installing a belt tensioner, it’s important to follow the manufacturer’s guidelines and recommendations. Proper positioning, alignment, and adjustment of the tensioner are essential to achieve the desired tension and ensure the efficient operation of the belt drive system.
In summary, a belt tensioner is a critical component in mechanical systems utilizing belt drives. It maintains the appropriate tension in the belt, prevents slippage, reduces vibrations and noise, and contributes to the longevity and reliability of the system. By incorporating a belt tensioner, engineers and designers can optimize the performance and efficiency of belt-driven machinery and equipment.
editor by CX 2023-11-14
China Wholesale Auto Parts V-ribbed Belt Tensioner Pulley OEM 8200040155 8201008780 7700868201 8200136224 7700870795 for Dacia Logan Sandero pulley design
Merchandise Description
Merchandise Description
Wholesale Car Components V-ribbed Belt Tensioner Pulley OEM eighty two 77 8201 820013 for Dacia Logan Sandero
H2o Pump for DACIA
Drinking water Pump for NISSAN
Drinking water Pump for RENAULT
All types of auto h2o pumps can be made for you. Welcome to your inquiry.
MIC NO. | REF&OEM NO | APPLICATION | YEAR | Picture |
TB34RE9601 | 951154 77 8201 8200040155 |
DACIA LOGAN (LS_) 1.2 16V DACIA SANDERO 1.2 16V DACIA SANDERO 1.2 16V LPG DACIA SANDERO II 1.2 NISSAN KUBISTAR Box (X76) 1.2 NISSAN KUBISTAR Box (X76) 1.2 16V RENAULT CLIO II (BB_, CB_) 1.2 (BB0A, BB0F,, BB2H, CB0A,… RENAULT CLIO II (BB_, CB_) 1.2 16V (BB05, BB0W, BB11BB2V, CB05,… RENAULT CLIO II (BB_, CB_) 1.2 LPG RENAULT CLIO II (BB_, CB_) 1.2 LPG (BB0A, CB0A) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB10) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB1K, SB2D) RENAULT KANGOO (KC0/1_) 1.2 (KC0A, KC0K, KC0F, KC01) RENAULT KANGOO (KC0/1_) 1.2 16V (KC05,KC06,KC03,KC0T,KC0W,KC1D) RENAULT KANGOO Categorical (FC0/1_) 1.2 (FC01, FC0A, FC0F) RENAULT KANGOO Specific (FC0/1_) 1.2 (FC1A) RENAULT KANGOO Specific (FC0/1_) 1.2 16V (FC05, FC1P, FC1K, FC0T) RENAULT THALIA I (LB_) 1.2 16V RENAULT TWINGO I (C06_) 1.2 (C066, C068) RENAULT TWINGO I (C06_) 1.2 (C067) RENAULT TWINGO I (C06_) 1.2 16V (C060) RENAULT TWINGO I (C06_) 1.2 16V (C06C, C06D, C06K) |
2006- 2008- 2008- 2012- 2003- 2006- 1998- 2001- 1998-2009 1999-2001 1999-2003 1998- 1997- 2001- 1997- 1998-2001 2001- 2002- 1996-2007 1996-2007 2004-2007 2001-2007 |
Business Profile
Our Manufacturing facility
Exhibition Demonstrates
FAQ
Q1: Are you a trading organization or manufacturer?
A1: We are industrial and export mixture.
Q2: If you will find any quality dilemma, what would you do to assure our legal rights?
Q2: We seldom get complains from our consumers so considerably. If it genuinely takes place, we will be accountable for that.
Q3: How long is your shipping and delivery time?
Q3: About thirty-45 days if no stock About 7 times when stock offered.
This autumn: What is your sample plan?
A4: Samples under $50.0 will be no charge, however the freight charge should be borne on buyer’s account.
Normal delivery time will be 4 days when stock available.
US $1-5 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | Online Technical Support |
---|---|
Warranty: | 1 Year |
Car Make: | FOR DACIA |
Car Model: | FOR SANDERO |
Lead time: | 60-90 days |
OEM service: | Available |
###
Samples: |
US$ 15/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
MIC NO. | REF&OEM NO | APPLICATION | YEAR | PHOTO |
TB34RE9601 | 951154 7700868201 7700870795 8200040155 8200136224 8201008780 9646495880 1175000Q0G 1175000QAH 1175000QAS 6453NN 8200434732 8200875156 |
DACIA LOGAN (LS_) 1.2 16V DACIA SANDERO 1.2 16V DACIA SANDERO 1.2 16V LPG DACIA SANDERO II 1.2 NISSAN KUBISTAR Box (X76) 1.2 NISSAN KUBISTAR Box (X76) 1.2 16V RENAULT CLIO II (BB_, CB_) 1.2 (BB0A, BB0F,, BB2H, CB0A,… RENAULT CLIO II (BB_, CB_) 1.2 16V (BB05, BB0W, BB11BB2V, CB05,… RENAULT CLIO II (BB_, CB_) 1.2 LPG RENAULT CLIO II (BB_, CB_) 1.2 LPG (BB0A, CB0A) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB10) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB1K, SB2D) RENAULT KANGOO (KC0/1_) 1.2 (KC0A, KC0K, KC0F, KC01) RENAULT KANGOO (KC0/1_) 1.2 16V (KC05,KC06,KC03,KC0T,KC0W,KC1D) RENAULT KANGOO Express (FC0/1_) 1.2 (FC01, FC0A, FC0F) RENAULT KANGOO Express (FC0/1_) 1.2 (FC1A) RENAULT KANGOO Express (FC0/1_) 1.2 16V (FC05, FC1P, FC1K, FC0T) RENAULT THALIA I (LB_) 1.2 16V RENAULT TWINGO I (C06_) 1.2 (C066, C068) RENAULT TWINGO I (C06_) 1.2 (C067) RENAULT TWINGO I (C06_) 1.2 16V (C060) RENAULT TWINGO I (C06_) 1.2 16V (C06C, C06D, C06K) |
2006- 2008- 2008- 2012- 2003- 2006- 1998- 2001- 1998-2009 1999-2001 1999-2003 1998- 1997- 2001- 1997- 1998-2001 2001- 2002- 1996-2007 1996-2007 2004-2007 2001-2007 |
US $1-5 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | Online Technical Support |
---|---|
Warranty: | 1 Year |
Car Make: | FOR DACIA |
Car Model: | FOR SANDERO |
Lead time: | 60-90 days |
OEM service: | Available |
###
Samples: |
US$ 15/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
MIC NO. | REF&OEM NO | APPLICATION | YEAR | PHOTO |
TB34RE9601 | 951154 7700868201 7700870795 8200040155 8200136224 8201008780 9646495880 1175000Q0G 1175000QAH 1175000QAS 6453NN 8200434732 8200875156 |
DACIA LOGAN (LS_) 1.2 16V DACIA SANDERO 1.2 16V DACIA SANDERO 1.2 16V LPG DACIA SANDERO II 1.2 NISSAN KUBISTAR Box (X76) 1.2 NISSAN KUBISTAR Box (X76) 1.2 16V RENAULT CLIO II (BB_, CB_) 1.2 (BB0A, BB0F,, BB2H, CB0A,… RENAULT CLIO II (BB_, CB_) 1.2 16V (BB05, BB0W, BB11BB2V, CB05,… RENAULT CLIO II (BB_, CB_) 1.2 LPG RENAULT CLIO II (BB_, CB_) 1.2 LPG (BB0A, CB0A) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB10) RENAULT CLIO II Box (SB0/1/2_) 1.2 (SB0A, SB0F, SB1K, SB2D) RENAULT KANGOO (KC0/1_) 1.2 (KC0A, KC0K, KC0F, KC01) RENAULT KANGOO (KC0/1_) 1.2 16V (KC05,KC06,KC03,KC0T,KC0W,KC1D) RENAULT KANGOO Express (FC0/1_) 1.2 (FC01, FC0A, FC0F) RENAULT KANGOO Express (FC0/1_) 1.2 (FC1A) RENAULT KANGOO Express (FC0/1_) 1.2 16V (FC05, FC1P, FC1K, FC0T) RENAULT THALIA I (LB_) 1.2 16V RENAULT TWINGO I (C06_) 1.2 (C066, C068) RENAULT TWINGO I (C06_) 1.2 (C067) RENAULT TWINGO I (C06_) 1.2 16V (C060) RENAULT TWINGO I (C06_) 1.2 16V (C06C, C06D, C06K) |
2006- 2008- 2008- 2012- 2003- 2006- 1998- 2001- 1998-2009 1999-2001 1999-2003 1998- 1997- 2001- 1997- 1998-2001 2001- 2002- 1996-2007 1996-2007 2004-2007 2001-2007 |
How to Assemble a Pulley System
A pulley is a wheel that rotates on a shaft or shaft to support the movement of a taut cable. Pulleys allow power to be transmitted from the shaft to the cable.
Simple pulley
The simplest theory of operation of a pulley system assumes that the rope and weight are weightless and that the rope and pulley are not stretched. Since the force on the pulley is the same, the force on the pulley shaft must also be zero. Therefore, the force exerted on the pulley shaft is also distributed evenly between the two wires passing through the pulley. The force distribution is shown in Figure 1.
The use of simple pulleys is as old as history. Before the Industrial Revolution, people relied on muscle strength to carry heavy loads. Pulleys, levers and ramps make this possible. Today, we can see pulleys in a variety of systems, from exercise equipment to garage doors, and even rock climbers use them to help them reach greater heights. As you can see, these simple machines have been around for centuries and are used in everyday life.
Another simple pulley system is the pulley system. In this system, there is a fixed pulley at the top and a movable pulley at the bottom. The two pulleys are connected by a rope. This combination reduces the amount of work required to lift the load. Additionally, the ropes used in this system are usually made of rope and woven through the individual wheels of the pulley drum.
A pulley is an ingenious device that distributes weight evenly and can be used to lift heavy objects. It is easy to build and can be easily modified for a wide range of activities. Even young children can make their own with very few materials. You can also use simple household items such as washing machines, thin textbooks and even chopsticks. It’s very useful and can be a great addition to your child’s science and engineering activities.
The simplest pulley system is movable. The axis of the movable pulley can move freely in space. The load is attached to one end of the pulley and the other end to the stationary object. By applying force on the other end of the rope, the load is lifted. The force at the other end of the rope is equal to the force at the free end of the pulley.
Another form of pulley is the compound pulley. Compound pulleys use two or more wheels to transmit force. Compound pulleys have two or more wheels and can lift heavier objects. Dim is POLE2.
tapered pulley
It is important to clean and align the bolt holes before assembling the tapered pulley. The screws should be lubricated and the threads cleaned before installation. To install the pulley, insert it into the shaft keyway. The keyway should be aligned with the shaft hole to prevent foreign matter from entering the pulley. Then, alternately tighten the bolts until the pulley is tightened to the desired torque.
A tapered pulley is a basic structure. The pulley belt is arranged across four steps. Installed between the headstock casting and the main shaft, it is often used in the paper industry. It integrates with printing machinery and supports assembly lines. These pulleys are also available in metric range options, eliminating the need for ke-waying or re-drilling. They are easy to install, and users can even customize them to suit their needs.
CZPT Private Limited is a company that provides unique products for various industries. This large product is used for many different purposes. Also, it is manufactured for industrial use. The company’s website provides detailed specifications for the product. If you need a tapered pulley, contact a company in your area today to purchase a quality product!
Tapered pulleys are vital to paper mill machinery. Its special design and construction enable it to transmit power from the engine source to the drive components. The advantages of this pulley include low maintenance costs and high mechanical strength. Cone wheel diameters range from 10 inches to 74 inches. These pulleys are commonly used in paper mills as they offer low maintenance, high mechanical strength and low wear.
A tapered sleeve connects the pulley to the shaft and forms an interference fit connector. The taper sleeve is fixed on the shaft with a key, and the corresponding inner hole is fixed on the shaft with a key. These features transmit torque and force to the pulley through friction. This allows the tapered pulley to move in a circular motion. The torque transfer characteristics of this pulley are most effective in high speed applications.
The sleeve is the most important part when assembling the tapered pulley. There is an 8-degree taper inside the cone, which is closely connected to the inner surface of the pulley. Taper sleeves and pulleys are interchangeable. However, tapered pulleys can be damaged after prolonged use.
pulley pulley system
A pulley pulley system is a great way to move heavy objects. These systems have been around for centuries, dating back to the ancient Greeks. This simple mechanism enables a person to lift heavy objects. These blocks are usually made of rope, and the number of turns varies for different types of rope. Some blocks have more cords than others, which creates friction and interferes with the easy movement of the lifting system.
When using a pulley pulley, the first thing to decide is which direction to pull. Unfavorable rigging means pulling in the opposite direction. In theory, this method is less efficient, but sometimes requires a certain amount of work space. The benefit is that you will increase the mechanical advantage of the pulley by pulling in the opposite direction. So the interception and tackle system will give you more of a mechanical advantage.
Pulley pulleys are an excellent choice for lifting heavy objects. The system is simple to install and users can easily lift objects without extensive training. Figure 3.40 shows a pulley in action. In this photo, the person on the left is pulling a rope and tying the end of the rope to a weight. When the rope is attached to the load, the rope will be pulled over the pulley and pulley.
The blocks on the blocks are attached to the ends of the rope. This creates unique lifting advantages compared to single-line systems. In Figure 3, the tension of each thread is equal to one-third of the unit weight. When the rope is pulled over the pulley, the force is divided equally between the two wires. The other pulley reverses the direction of the force, but that doesn’t add any advantage.
Use pulleys to reduce traction and load. The weight of the load has not changed, but the length of the rope has increased. Using this method, lifting the load by pulling the rope four times reduces the force required to lift one foot. Likewise, if the pulley system had four pulleys instead of three, the length of the rope would be tripled.
The system can transmit loads in any direction. Rope length is determined by multiplying the distance from the fixed block to the load by the mechanical advantage. If the mechanical advantage is 3:1, then passing the rope through the pulley 3 times will produce the required traction distance. Also, the length of the rope will depend on the mechanical advantage, so if the load is three times the length of the rope, it will be more than three times the required length.
editor by czh 2022-12-14
China factory OEM Auto Parts Belt Tensioner Pulley Bearing13505-74011 for CZPT Camry with Hot selling
Product Description
Specifications of Bearing |
We have all kinds of bearings, just tell me your item number and quantity,best price will be offered to you soon
The material of the bearings, precision rating, seals type,OEM service,etc, all of them we can make according to your requirements.
Product Description of CZPT wheel hub bearing
Product Description:
Application
Widely used in Paper machines, conveyor equipment, rotary kilns, drums, tube mills, converters, large electrical machines,
rail vehicles,the mining, metallurgical, chemical industry, agriculture, transportation and other machinery.
Production process
1. CZPT machining of steel pipe;
2. The inner & outer ring grinding;
3. The precision work of inner ring & outer ring;
4. Bearing cleaning;
5. The Assembly of inner ring , outer ring , bearing balls & cage, etc;
6. Bearing inspection( precison, noise & vibration levels);
Specifications of CZPT wheel hub bearing 25BWD01
Product name | NSK bearing 25BWD01 | |
Dimension | 25*52*42mm | |
Brand name | NSK | |
Material | chrome steel | |
Weight | 0.36 Kg | |
Hardness | 58~62 | |
Quality standard | SGS ISO9001 |
Showing of Bearing |
Parameters of Bearing |
More details of CZPT wheel hub bearing
Boundary dimensions (mm) | Model | Basic load ratings (N) | Mass (kg) | |||
d | D | B | C r | Cor | ||
25 | 52 | 42 | 25BWD01 | 28 500 | 21 400 | 0.36 |
27 | 60 | 50 | 27BWD01J | 42 500 | 32 500 | 0.36 |
28 | 58 | 42 | 28BWD03A | 33 500 | 25 700 | 0.4 |
61 | 42 | 28BWD01A | 38 500 | 29 800 | 0.53 | |
30 | 55 | 26 | 30BWD08 | 15 600 | 14 700 | 0.26 |
63 | 42 | 30BWD01A | 40 500 | 33 000 | 0.55 | |
68 | 45 | 30BWD04 | 52 500 | 40 000 | 0.69 | |
32 | 72 | 45 | 32BWD05 | 58 500 | 45 000 | 0.8 |
34 | 64 | 37 | 34BWD04B | 36 500 | 31 000 | 0.82 |
64 | 37 | 34BWD11 | 36 500 | 31 000 | 0.46 | |
66 | 37 | 34BWD10B | 40 500 | 33 500 | 0.51 | |
68 | 42 | 34BWD09A | 44 000 | 35 000 | 0.64 | |
68 | 37 | 34BWD09A | 44 000 | 35 000 | 0.54 | |
35 | 65 | 37 | 35BWD19E | 36 500 | 31 000 | 0.48 |
68 | 30 | 35BWD07 | 42 500 | 36 500 | 0.48 | |
68 | 30 | 35BWD07A | 40 500 | 34 500 | 0.48 | |
68 | 36 | 35BWD16 | 42 500 | 36 500 | 0.48 | |
72 | 31 | 35BWD06A | 50 000 | 40 000 | 0.55 | |
36 | 68 | 33 | 36BWD04 | 42 500 | 36 500 | 0.48 |
72 | 42 | 36BWD03 | 50 000 | 40 000 | 0.68 | |
72.041 | 34 | 36BWD01B | 50 000 | 40 000 | 0.57 | |
37 | 74 | 45 | 37BWD01 | 52 500 | 44 000 | 0.79 |
38 | 70 | 37 | 38BWD19 | 44 500 | 39 500 | 0.48 |
70 | 38 | 38BWD21 | 44 500 | 39 500 | 0.57 | |
71 | 30 | 38BWD09A | 45 500 | 39 000 | 0.5 | |
71 | 39 | 38BWD22 | 42 000 | 37 500 | 0.62 | |
72 | 33 | 38BWD12 | 48 500 | 42 000 | 0.56 | |
72.041 | 34 | 38BWD04 | 47 500 | 41 000 | 0.55 | |
74 | 33 | 38BWD01A | 52 500 | 44 000 | 0.6 | |
74 | 50 | 38BWD06D | 52 500 | 44 000 | 0.82 | |
74 | 40 | 38BWD10B | 52 500 | 44 000 | 0.69 | |
74 | 33 | 38BWD15A | 52 500 | 44 000 | 0.61 | |
74 | 33 | 38BWD24 | 48 000 | 43 000 | 0.62 | |
76 | 43 | 38BWD23A | 48 000 | 43 500 | 0.82 | |
80 | 33 | 38BWD18 | 47 500 | 46 000 | 0.79 | |
39 | 68 | 37 | 39BWD03 | 38 000 | 34 000 | 0.5 |
72 | 37 | 39BWD01L | 47 500 | 41 000 | 0.6 | |
74 | 39 | 39BWD05 | 48 500 | 42 500 | 0.66 | |
40 | 74 | 40 | 40BWD06D | 54 000 | 47 000 | 0.66 |
74 | 42 | 40BWD12 | 48 000 | 43 000 | 0.71 | |
74 | 36 | 40BWD15A | 48 000 | 43 000 | 0.62 | |
74 | 34 | 40BWD16 | 50 500 | 45 500 | 0.59 | |
76 | 38 | 40BWD05 | 52 500 | 44 500 | 0.7 | |
76 | 33 | 40BWD08A | 51 500 | 48 000 | 0.61 | |
80 | 34 | 40BWD07A | 65 500 | 56 000 | 0.73 | |
80 | 34 | 40BWD14 | 47 500 | 46 000 | 0.77 | |
42 | 76 | 33 | 42BWD12 | 46 000 | 43 000 | 0.65 |
76 | 35 | 42BWD06 | 50 500 | 46 000 | 0.64 | |
78 | 38 | 42BWD09 | 55 000 | 48 500 | 0.72 | |
80 | 45 | 42BWD11 | 59 000 | 50 500 | 0.9 | |
80 | 34 | 42BWD13 | 47 500 | 46 000 | 0.76 | |
43 | 76 | 43 | 43BWD12A | 48 000 | 43 500 | 0.71 |
79 | 38 | 43BWD08 | 55 000 | 48 500 | 0.77 | |
79 | 45 | 43BWD13A | 49 500 | 47 000 | 0.87 | |
80 | 45 | 43BWD03 | 55 000 | 48 500 | 0.91 | |
82 | 45 | 43BWD06B | 62 000 | 54 500 | 0.94 | |
45 | 83 | 45 | 45BWD06 | 57 500 | 52 500 | 0.95 |
84 | 39 | 45BWD03 | 58 500 | 52 500 | 0.88 | |
84 | 40 | 45BWD07B | 69 000 | 61 000 | 0.89 | |
84 | 40 | 45BWD09 | 64 500 | 57 500 | 0.9 | |
84 | 45 | 45BWD10 | 58 500 | 52 500 | 0.98 | |
46 | 79 | 45 | 46BWD01A | 49 500 | 47 000 | 0.79 |
48 | 89 | 42 | 48BWD01 | 69 000 | 62 000 | 0.9 |
49 | 84 | 50 | 49BWD02 | 46 000 | 47 000 | 1 |
88 | 46 | 49BWD01B | 64 500 | 60 000 | 1.05 | |
27 | 52 | 43 | 27KWD02 | 53 000 | 73 500 | 0.41 |
30 | 58 | 42 | 30KWD01A | 62 000 | 89 000 | 0.5 |
34 | 67.8 | 43 | 34KWD03D | 89 500 | 120 000 | 0.73 |
35 | 60 | 32.4 | 35KWD02 | 60 000 | 93 500 | 0.38 |
37 | 74 | 45 | 37KWD01 | 89 000 | 123 000 | 0.84 |
38 | 64 | 37 | 38KWD01A | 60 500 | 88 000 | 0.46 |
68 | 37 | 38KWD02 | 63 000 | 92 500 | 0.56 | |
76 | 43 | 38KWD04A | 92 500 | 138 000 | 0.94 | |
38.993 | 72.011 | 37 | 39KWD02 | 68 500 | 92 500 | 0.63 |
42 | 72 | 38 | 42KWD02A | 76 500 | 108 000 | 0.58 |
72 | 38 | 42KWD02D | 76 500 | 108 000 | 0.58 | |
80 | 38 | 42KWD08 | 95 000 | 128 000 | 0.82 | |
43 | 76 | 43 | 43KWD02 | 94 000 | 138 000 | 0.82 |
77 | 42 | 43KWD04 | 79 500 | 111 000 | 0.81 | |
45 | 77 | 50 | 45KWD04 | 96 000 | 142 000 | 0.89 |
78 | 40 | 45KWD03 | 91 000 | 130 000 | 0.73 | |
80 | 50 | 45KWD05 | 99 500 | 153 000 | 1.02 | |
46 | 77 | 45 | 46KWD04 | 82 500 | 138 000 | 0.84 |
78 | 49 | 46KWD03 | 82 500 | 138 000 | 0.97 | |
47 | 82 | 57.5 | EP47KWD01 | 95 000 | 138 000 | 1.1 |
27 | 60 | 15 | 27BWK02A | 38 500 | 29 600 | 1.33 |
63.2 | 15.5 | 27BWK03J | 41 500 | 30 500 | 1.9 | |
64.7 | 15 | 27BWK04D2a | 38 500 | 29 600 | 1.45 | |
65.4 | 15.5 | 27BWK06 | 38 500 | 29 600 | 1.9 | |
28 | 63 | 14 | 28BWK08J | 41 500 | 30 500 | 1.75 |
64 | 14 | 28BWK06D | 38 500 | 29 600 | 1.74 | |
64 | 6 | 28BWK15J | 38 500 | 29 600 | 1.38 | |
69 | 10.35 | 28BWK16 | 44 000 | 34 500 | 1.8 | |
30 | 66.1 | 15.5 | 30BWK13A | 44 000 | 34 500 | 1.93 |
67 | 11.5 | 30BWK02J | 41 500 | 31 000 | 1.8 | |
67 | 14 | 30BWK11 | 44 000 | 34 500 | 1.91 | |
73.8 | 15.5 | 30BWK18 | 55 000 | 40 000 | 1.98 | |
33 | 73 | 14.5 | 33BWK02S | 50 000 | 39 500 | 2.17 |
41 | 86.5 | 17.5 | 41BWK03 | 52 000 | 46 500 | 2.69 |
28 | 51.8 | 21 | 28BWK12 | 35 000 | 29 300 | 1.03 |
51.8 | 21 | EP30BWK16 | 47 000 | 35 500 | 1.06 | |
30 | 51.8 | 21 | 30BWK03B | 47 000 | 35 500 | 1.05 |
51.8 | 21 | 30BWK17 | 38 500 | 31 500 | 1.15 | |
51.8 | 21 | 30BWK10 | 40 500 | 33 000 | 1.01 | |
46.3 | 21 | EP30BWK14 | 47 000 | 35 500 | 1.35 | |
38 | 87.4 | 54.8 | 38BWK01J | 59 000 | 49 500 | 1.25 |
43 | 83 | 42.5 | 43BWK03D | 55 000 | 48 500 | 1.22 |
83 | 47.5 | 43BWK04 | 55 000 | 48 500 | 1.32 | |
84 | 56 | 43BWK07 | 52 500 | 50 000 | 1.67 | |
50 | 86 | 55 | NTF50KWH01B | 98 000 | 157 000 | 1.488 |
51 | 87 | 55 | 51KWH01A | 101 000 | 164 000 | 1.533 |
Packing&Delivery |
Packing
A. plastic box+outer carton+pallets
B. plastic bag+box+carton+pallet
C. tube package+middle box+carton+pallet
D. Of course we will also be based on your needs
Delivery
1.Most orders will be shipped within 3-5 days of payment being received.
2.Samples will be shipped by courier as FedEx,UPS,DHL,etc.
3.More than 3000 set bearings, it is recommended to be shipped by sea (sea transportation).
Our Main Products |
Our Company |
HangZhou CZPT bearing co., LTD
is a professional manufacturer of bearings, collecting together production and processing, domestic and foreign trade. The factory specializes in the production and export of many kinds of bearings: deep groove ball bearing, spherical roller bearing, tapered roller bearing, and so on. The customized bearings is also acceptable and the production will be according to your requirements and samples.
All bearings in our factory adopt international quality standards. The complete equipment, strict quality control, advanced Japanese technology and quality service provide a guarantee to supply the high-quality bearings for our customers. Domestic sales and service network has covered 15 major cities in China, meanwhile our bearing has sold more than 60 overseas countries and regions.
Our bearings have been widely used in agriculture, textiles, mining, printing and packaging industries, in addition to applications in airports, air conditioning systems, conveyors and ship also applied.
If you are interested in any of our bearings or have an intention to order, please feel free to contact us.
FAQ |
SAMPLES
1.Samples quantity: 1-10 pcs are available.
2.Free samples: It depends on the model NO., material and quantity. Some of the bearings samples need client to pay samples charge and shipping cost.
3.It’s better to start your order with Trade Assurance to get full protection for your samples order.
CUSTOMIZED
The customized LOGO or drawing is acceptable for us.
MOQ
1.MOQ: 10 pcs mix different standard bearings.
2.MOQ: 5000 pcs customized your brand bearings.
OEM POLICY
1.We can printing your brand (logo,artwork)on the shield or laser engraving your brand on the shield.
2.We can custom your packaging according to your design
3.All copyright own by clients and we promised don’t disclose any info.
SUPORT
Please visit our Clunt bearings website, we strongly encourge that you can communicate with us through email,thanks!
Contact Us |
MR YANG
We have all kinds of bearings, just tell me your item number and quantity,best price will be offered to you soon
The material of the bearings, precision rating, seals type,OEM service,etc, all of them we can make according to your requirements.
What Is a V-Belt?
A v-belt is a type of belt that provides a continuous motion to the vehicle’s wheels. This type of belt is made of several different components. They usually have a trapezium-shaped cross-section because of its elastomer core. Elastomers are often made of polyurethane or a synthetic rubber with good shock resistance. Sometimes, a v-belt will have 2 sections – cushion rubber and compression rubber.
Link-type V-belt
A laminated link-type V-belt is 1 embodiment of the present invention. The belt comprises individual lamina sections connected longitudinally by studs and tubes, each of which has at least 1 connecting means. The slots in the links allow for a full share of the load to be transferred through the belt, and they also reduce substantially all internal mechanical stresses. The belt is preferably designed to extend substantially the entire width of the machine being driven.
Conventional link-type V-belts are installed between 2 pulleys on the tight side of the V-drive. A wide end of a link moves in the direction of rotation, while the stud of a second, smaller link pulls the nose end of the third link forward. The shank of the stud pivots on a solid fabric located in hole 2 of the third link below. The bottom link, however, curls over the stud and the belt is assembled.
The present invention offers an improved method of forming a link-type V-belt. The belt is manufactured using links and does not have to be fitted as tightly as conventional link-type V-belts. This belt is flexible and strong enough to handle normal tension loads in a well-designed drive. In addition, the belts made using the present invention will have a longer life, thereby extending the drive’s load-carrying capacity.
Classical V-belt
A classical trapezoidal belt profile makes the VB Classical V-belt ideal for various industrial applications. Available in small sizes from 5mm to 3mm, these belts are available with cogged or raw edges. Their highly engineered construction makes them ideal for a variety of uses. These belts are commonly used in motors, compressors, milling machines, mixers, and other mechanical devices. To determine the right belt for your application, consider the following factors.
The classic v-belt is the most common and economically-priced type of v-belt. They are manufactured using special formulated rubber reinforced with polyester cords. These belts can span from 16 inches to 400 inches in length. The classic V-belt is also very easy to replace. The belt’s outer diameter and pitch can be measured. The length is typically standardized by the Association for Rubber Product Manufacturers.
Typically, classical V-belts are used in single-belt drives. Because they don’t require lubrication or maintenance, these belts are often available in sizes A and B. However, larger belt sizes are rarely used for single-belt drives. In such cases, multiple A or B belts are an economical alternative to single-belt C. In addition, narrower-profile V-belts provide higher power ratings than conventional V-belts because of their higher depth-to-width ratio. These belts are ideal for heavy-duty applications.
Narrow V-belt
The narrow v-belt is the same as a conventional v-belt, but it has a smaller top and bottom width. This makes it suitable for higher horsepower applications, and it is used in high-end sports cars. Narrow v-belts are generally characterized by a letter “v” on the top side and a length of outside dimensions of 1.6:1.
The steel wires that comprise the core of the v-belt are endless and are free of joints. This provides the strength required for torque transmission. A base rubber compound is placed around the steel wire and acts as a medium of compression and shock absorption during power transmission. A plastic layer acts as a protective cover, and provides the rubber with a degree of temperature tolerance. While choosing a narrow v-belt, it is important to keep in mind that there are some disadvantages to a narrow V-belt.
For example, a narrow V-belt is suitable for high-power applications, and may be used in a small assembly space. Its narrow profile also allows it to be space-saving in layout and allows high-speed drives without additional belts. Furthermore, it reduces operating and maintenance costs. It is ideal for applications where space is limited, and a high torque is required. The benefits of a narrow V-belt are plentiful.
Banded belt
Identifying a banded v-belt can be tricky, but there are a few signs that can indicate a possible problem. Cracked belts can be difficult to spot, but they can be an early indicator of a more serious problem. Look for cracked underside edges, worn covers, and misplaced slack. If 1 or more of these factors applies to your belt, you may want to seek a replacement.
Banded v-belts are made with an elastomer core. The main component of this belt is the elastomer, which is used for the band’s flexural strength and shock resistance. It’s sometimes separated into 2 sections, with each section connected to the other by a tension cord. This gives the belt its trapezium cross-section, which increases tensile strength.
The 2 main types of banded v-belts are wrapped or raw edge. Wrapped v-belts have a fiber-covered body while raw edge belts are uncovered. Banded v-belts are often classified by their cross-section, and include: standard v-belt, wedge v-belt, narrow versus double v-belt, cogged v-belt, and double t-belt.
Banded v-belts are popular with commercial applications. Whether you’re looking for a 2V-belt or a large 8V-belt, V-Belt Guys has what you need. We also stock a wide variety of different banded v-belts and can help you find 1 that fits your needs and budget. Take a look at our selection today!
Traditional V-belt
Although a traditional V-belt may be a glorified rubber band, modern variations reflect advances in engineering. Proper installation and maintenance are essential for trouble-free service. When you are replacing a traditional V-belt, be sure to follow these simple steps to ensure its longevity. Read on to learn more. Listed below are the features of each type of V-belt. Identify the type of belt you need by measuring its top width, circumference, and dimensions.
TEC Traditional V-belts have an exceptionally low slip rate and are resistant to high operating temperatures. These types of belts do not experience early belt aging. They are also highly resistant to poor operating conditions. However, the maintenance is more extensive than other types of belts. A typical V-belt part number is B50, which is the cross-section size of a 50-inch belt. The belt’s lifespan is greatly increased because of this feature.
A ribbed V-belt is another option. It has a deeper V than a traditional V-belt. The ribs in this type are narrower and more flexible. These ribs are smaller than the classic V-belt, but they can transmit 3 times as much horsepower. Because they are thinner, these belts are more flexible than traditional V-belts. The thickness of the ribs is less critical.
Metric V-belt
Metric V-belts are made to a more precise standard than their American counterparts. These belts are manufactured to meet ARPM tolerances, making them suitable for industrial, machine, and food processing applications. This metric system is also more convenient than converting between the 2 units. Listed below are the most common uses for a Metric V-belt. If you’re in the market for a new belt, consider ordering a metric one.Metric V-belts are made to a more precise standard than their American counterparts. These belts are manufactured to meet ARPM tolerances, making them suitable for industrial, machine, and food processing applications. This metric system is also more convenient than converting between the 2 units. Listed below are the most common uses for a Metric V-belt. If you’re in the market for a new belt, consider ordering a metric one.
Metric V-belts are generally more durable than their equivalents made of standard American-sized belts. Metric V-belts are available in many different sizes to fit different machineries. In addition to offering superior load-carrying capacity, Metric Power(tm) V-belts are known for their exceptional flex and stretch characteristics. For optimum performance in textile mills, food processing, and machine tool applications, Metric Power(tm) V-belts are manufactured using a proprietary construction that combines a higher load-carrying capacity with superior flex and stretch.
Metric belts can generate 50% to 100% more horsepower than conventional and classic sectioned belts. This is achieved through improved construction and placement of the cord line. These belts also have unique wedge designs that help them support the cord in motion. However, you must ensure the proper tension when buying a Metric V-belt, because improper tension may damage the belt. They are compatible with both U.S. and international standards.
China Standard Senp Car Parts Tensioner Damper Wholesale Auto Spare Parts 94810240323 Quality Engine Timing Belt Tensioner Pulley Tensioner for Porsche Paramera Cayenne wholesaler
Product Description
SENP 94815710323 Original Quality Belt tensioner
Product Type |
Belt tensioner |
OE No. |
94815710323 |
Suitable for |
For Porsche Paramera Cayenne |
Weight |
1 kg |
Brand |
SENP |
Certification |
ISO9001 |
MOQ |
1 PC |
Packing |
SENP packing, neutral packing, client’s packing |
Warranty |
24 months / 80000km |
Payment term |
T/T, Paypal, Western Union |
FQA:
Q1.Where is your company?
A: Our Head Office are located in HangZhou City, ZheJiang Province, China(Mainland);
Q2. What is your terms of packing?
A: Generally, we pack our goods in SENP boxes or neutral boxes
Q3. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q4. What is your terms of delivery?
A: EXW, FOB,
Q5. How about your delivery time?
A: Generally, it will take about 20 days after receiving your deposit. The specific delivery time depends on the items and the
quantity of your order.
Q6. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q7. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier costs.
Q8. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q9. How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers’ benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
What Is a V-Belt?
A v-belt is a type of belt that provides a continuous motion to the vehicle’s wheels. This type of belt is made of several different components. They usually have a trapezium-shaped cross-section because of its elastomer core. Elastomers are often made of polyurethane or a synthetic rubber with good shock resistance. Sometimes, a v-belt will have 2 sections – cushion rubber and compression rubber.
Link-type V-belt
A laminated link-type V-belt is 1 embodiment of the present invention. The belt comprises individual lamina sections connected longitudinally by studs and tubes, each of which has at least 1 connecting means. The slots in the links allow for a full share of the load to be transferred through the belt, and they also reduce substantially all internal mechanical stresses. The belt is preferably designed to extend substantially the entire width of the machine being driven.
Conventional link-type V-belts are installed between 2 pulleys on the tight side of the V-drive. A wide end of a link moves in the direction of rotation, while the stud of a second, smaller link pulls the nose end of the third link forward. The shank of the stud pivots on a solid fabric located in hole 2 of the third link below. The bottom link, however, curls over the stud and the belt is assembled.
The present invention offers an improved method of forming a link-type V-belt. The belt is manufactured using links and does not have to be fitted as tightly as conventional link-type V-belts. This belt is flexible and strong enough to handle normal tension loads in a well-designed drive. In addition, the belts made using the present invention will have a longer life, thereby extending the drive’s load-carrying capacity.
Classical V-belt
A classical trapezoidal belt profile makes the VB Classical V-belt ideal for various industrial applications. Available in small sizes from 5mm to 3mm, these belts are available with cogged or raw edges. Their highly engineered construction makes them ideal for a variety of uses. These belts are commonly used in motors, compressors, milling machines, mixers, and other mechanical devices. To determine the right belt for your application, consider the following factors.
The classic v-belt is the most common and economically-priced type of v-belt. They are manufactured using special formulated rubber reinforced with polyester cords. These belts can span from 16 inches to 400 inches in length. The classic V-belt is also very easy to replace. The belt’s outer diameter and pitch can be measured. The length is typically standardized by the Association for Rubber Product Manufacturers.
Typically, classical V-belts are used in single-belt drives. Because they don’t require lubrication or maintenance, these belts are often available in sizes A and B. However, larger belt sizes are rarely used for single-belt drives. In such cases, multiple A or B belts are an economical alternative to single-belt C. In addition, narrower-profile V-belts provide higher power ratings than conventional V-belts because of their higher depth-to-width ratio. These belts are ideal for heavy-duty applications.
Narrow V-belt
The narrow v-belt is the same as a conventional v-belt, but it has a smaller top and bottom width. This makes it suitable for higher horsepower applications, and it is used in high-end sports cars. Narrow v-belts are generally characterized by a letter “v” on the top side and a length of outside dimensions of 1.6:1.
The steel wires that comprise the core of the v-belt are endless and are free of joints. This provides the strength required for torque transmission. A base rubber compound is placed around the steel wire and acts as a medium of compression and shock absorption during power transmission. A plastic layer acts as a protective cover, and provides the rubber with a degree of temperature tolerance. While choosing a narrow v-belt, it is important to keep in mind that there are some disadvantages to a narrow V-belt.
For example, a narrow V-belt is suitable for high-power applications, and may be used in a small assembly space. Its narrow profile also allows it to be space-saving in layout and allows high-speed drives without additional belts. Furthermore, it reduces operating and maintenance costs. It is ideal for applications where space is limited, and a high torque is required. The benefits of a narrow V-belt are plentiful.
Banded belt
Identifying a banded v-belt can be tricky, but there are a few signs that can indicate a possible problem. Cracked belts can be difficult to spot, but they can be an early indicator of a more serious problem. Look for cracked underside edges, worn covers, and misplaced slack. If 1 or more of these factors applies to your belt, you may want to seek a replacement.
Banded v-belts are made with an elastomer core. The main component of this belt is the elastomer, which is used for the band’s flexural strength and shock resistance. It’s sometimes separated into 2 sections, with each section connected to the other by a tension cord. This gives the belt its trapezium cross-section, which increases tensile strength.
The 2 main types of banded v-belts are wrapped or raw edge. Wrapped v-belts have a fiber-covered body while raw edge belts are uncovered. Banded v-belts are often classified by their cross-section, and include: standard v-belt, wedge v-belt, narrow versus double v-belt, cogged v-belt, and double t-belt.
Banded v-belts are popular with commercial applications. Whether you’re looking for a 2V-belt or a large 8V-belt, V-Belt Guys has what you need. We also stock a wide variety of different banded v-belts and can help you find 1 that fits your needs and budget. Take a look at our selection today!
Traditional V-belt
Although a traditional V-belt may be a glorified rubber band, modern variations reflect advances in engineering. Proper installation and maintenance are essential for trouble-free service. When you are replacing a traditional V-belt, be sure to follow these simple steps to ensure its longevity. Read on to learn more. Listed below are the features of each type of V-belt. Identify the type of belt you need by measuring its top width, circumference, and dimensions.
TEC Traditional V-belts have an exceptionally low slip rate and are resistant to high operating temperatures. These types of belts do not experience early belt aging. They are also highly resistant to poor operating conditions. However, the maintenance is more extensive than other types of belts. A typical V-belt part number is B50, which is the cross-section size of a 50-inch belt. The belt’s lifespan is greatly increased because of this feature.
A ribbed V-belt is another option. It has a deeper V than a traditional V-belt. The ribs in this type are narrower and more flexible. These ribs are smaller than the classic V-belt, but they can transmit 3 times as much horsepower. Because they are thinner, these belts are more flexible than traditional V-belts. The thickness of the ribs is less critical.
Metric V-belt
Metric V-belts are made to a more precise standard than their American counterparts. These belts are manufactured to meet ARPM tolerances, making them suitable for industrial, machine, and food processing applications. This metric system is also more convenient than converting between the 2 units. Listed below are the most common uses for a Metric V-belt. If you’re in the market for a new belt, consider ordering a metric one.Metric V-belts are made to a more precise standard than their American counterparts. These belts are manufactured to meet ARPM tolerances, making them suitable for industrial, machine, and food processing applications. This metric system is also more convenient than converting between the 2 units. Listed below are the most common uses for a Metric V-belt. If you’re in the market for a new belt, consider ordering a metric one.
Metric V-belts are generally more durable than their equivalents made of standard American-sized belts. Metric V-belts are available in many different sizes to fit different machineries. In addition to offering superior load-carrying capacity, Metric Power(tm) V-belts are known for their exceptional flex and stretch characteristics. For optimum performance in textile mills, food processing, and machine tool applications, Metric Power(tm) V-belts are manufactured using a proprietary construction that combines a higher load-carrying capacity with superior flex and stretch.
Metric belts can generate 50% to 100% more horsepower than conventional and classic sectioned belts. This is achieved through improved construction and placement of the cord line. These belts also have unique wedge designs that help them support the cord in motion. However, you must ensure the proper tension when buying a Metric V-belt, because improper tension may damage the belt. They are compatible with both U.S. and international standards.
China Best Sales Npb8-85D A2t05892 A2t18792 A3t45594 CZPT Mazda CZPT Auto Alternator Belt Bearing, Tensioner Pully Bearing, Engine Bearing near me supplier
Product Description
B series:
1) Bore diameter range: 10mm to 60mm
2) Outer ring with retaining ring
3) Snap ring: EC NP
4) Tolerance: ABEC-1, ABEC-3
5) Vibration level: V4, V3, V2, V1
6) Radial play: C0, C3
7) Package: Plastic tube packing or individual box packing
8) Lubricant: High temperature grease
9) Bearing materials: GCr15
10) Number
B8-23D, B8-74D, B8-79D, B8-85D, B10-46D, B10-50D,
B10-27D, B12-32D, B12-32DW, B15-69D, B15-86D,
B15-83D, B17-52D, B17-107D, B17-116D, B17-47D,
B17-99D, B9-3360, 9491-3820,
9491-3330, 9491-3660
Item Number
MNJ-471S (BA607), BCH 0571 4, TAM 1722, TAM 3571,
SCH 1413P, N-102 (BA608), FC-66217
We are the professional Alternator Bearings, Automotive Alternator Bearings manufacturer in China. We can produce Alternator Bearings, Automotive Alternator Bearings to your requirements. If you want get more types of Alternator Bearings, Automotive Alternator Bearings please contact us!
Bearing Number | OVERALL DIMENSION | ||||
d | D | B | |||
B8-74D | 8 | 22 | 11 | ||
B8-79D | 8 | 23 | 11 | ||
B8-23D | 8 | 23 | 14 | ||
B8-85D | 8 | 23 | 14 | ||
B10-46D | 10 | 23 | 11 | ||
6000-TT | 10 | 26 | 8 | ||
62000 | 10 | 26 | 10 | ||
B10-50D | 10 | 27 | 11 | ||
B10-27D | 10 | 27 | 14 | ||
62200 | 10 | 30 | 14 | ||
W6200 | 10 | 30 | 14.3 | ||
63001 | 12 | 28 | 12 | ||
62201 | 12 | 32 | 14 | ||
949100-2140 | 12 | 35 | 18 | ||
949100-3660 | 15 | 32 | 11 | ||
6202-TT | 15 | 35 | 11 | ||
B15-69 | 15 | 35 | 13 | ||
949100-2790 | 15 | 35 | 13 | ||
62202 | 15 | 35 | 14 | ||
949100-3460 | 15 | 38 | 19 | ||
62302 | 15 | 42 | 17 | ||
949100-3190 | 15 | 43 | 13 | ||
949100-3360 | 15 | 46 | 14 | ||
B15-86D | 15 | 47 | 14 | ||
B15-83D | 15 | 47 | 18 | ||
949100-3820 | 15 | 52 | 16 | ||
62203 | 17 | 40 | 16 | ||
W6203 | 17 | 40 | 17.5 | ||
B17-107D | 17 | 47 | 18 | ||
62303 | 17 | 47 | 19 | ||
B17-47D | 17 | 47 | 24 | ||
949100-3330 | 17 | 52 | 16 | ||
B17-99D | 17 | 52 | 17 | ||
B17-116D | 17 | 52 | 18 | ||
62304(17) | 17 | 52 | 21 | ||
6904DW | 18.8 | 37 | 9 | ||
62204 | 20 | 47 | 18 | ||
62304(20) | 20 | 52 | 21 | ||
62322 | 20 | 56 | 21 | ||
62205 | 25 | 52 | 18 | ||
W6205 | 25 | 52 | 20.6 | ||
B25-147 | 25 | 62 | 19 | ||
62305 | 25 | 62 | 24 | ||
W6305 | 25 | 62 | 25.4 | ||
62206 | 30 | 62 | 20 | ||
W6306 | 30 | 72 | 30.2 |
Choosing a V-Belt
When choosing a v-belt, you should understand the characteristics of each type and how they affect the performance of your machine. Listed below are the characteristics of Cogged, Narrow profile, and wide v-belts. Learn about the advantages and disadvantages of each. Choose the right v-belt for your machine to maximize its performance. Learn about the different materials used to make v-belts and how they influence the performance of your machine.
Narrow v-belts
While the flat belts are the most common type of v-belt, narrow v-belts are also a common option for industrial applications. These belts are similar to wedge belts in that they transmit heavier loads, but in a smaller form. Narrow v-belts are typically designated as 3V, 5V, and 8V and are denoted by their top width, multiplied by an eighth of an inch. Narrow v-belt sections conform to a wedge belt profile and are usually standardized by manufacturers. For example, section 3V corresponds to a wedge-type profile, while section 5V corresponds to SPB.
Both narrow and conventional v-belts are made of rubber stocks, which are generally composed of polymer or synthetic rubber. Fabric materials may be used to cover the stock material, adding a layer of reinforcement and protection. Narrow v-belts have a higher power rating than traditional V-belts. This is due to their greater depth-to-width ratio, which puts more of the reinforcing cord beneath the sheave.
The Wedge TLP ™ Narrow V-belt from Continental features a homogeneous one-piece design for maximum strength and long-term performance. These belts feature a high-denier cord and can handle significant horsepower increases. These belts are ideal for industrial applications. However, they are not as durable as their wider counterparts. The Wedge TLP is also an excellent choice for heavy-duty industrial applications.
Cogged v-belts
A key benefit of cogged v-belts is their ability to increase power output without sacrificing reliability. These belts are designed with precision-engineered cogs, which allow them to fit into smaller pulleys without reducing power output. Their raw-edge sidewalls and specially formulated EPDM rubber compound also help provide grip power. Cogged v-belts are manufactured by Carlisle(r) and offer several advantages over conventional belts.
The performance benefits of Cogged V-Belts are widely acknowledged. The company uses added-strength EPDM compounds in their belts to help reduce downtime and energy consumption. They are ideal for demanding applications such as power transmission. These belts are available in a variety of sizes and cross-sections. The section number of Cogged v-belts is H3V, H4V, and H5V.
The main difference between cogged v-belts and wedge belts is in the contact angle. While wedge and cogged v-belts have the same contact angle, the design and construction differs. Cogged v-belts typically include top and bottom layers of rubber, dampening rubber, tension cords, and top and bottom metal rings. Polychloroprene and polyester cords are common materials for the top and bottom layers, while aramid fibers are used for punishing applications.
Cogged v-belts are more flexible than traditional v-belts. Because of the slots on the belt surface, they reduce bending resistance. They are compatible with the same pulleys as standard v-belts, and run cooler and longer. They are also more efficient than standard V-belts. If you are considering a cogged V-belt for your application, it may be worth it to investigate the benefits of this belt type.
Wide v-belts
Variable-speed v-belts are wider in cross section than classical v-belts. The design of variable-speed v-belts varies depending on the manufacturer, but generally features a parallel top and bottom surface. This type of v-belt wedges tightly into its pulley’s grooves, reducing power loss and slippage. This type of v-belt is best suited to applications where speed changes frequently.
High-performance Wide V-belts feature a fibre-reinforced EPDM rubber base. The resulting supercharged EPDM mix is better suited for applications where the belts are subject to higher temperatures. This type of drive belt can also replace existing drives with ease and efficiency. CZPT offers a wide range of drive belts for all applications. For applications where slack is an issue, wrapped V-belts are a smart choice.
Narrow-V-belts, on the other hand, have a more favorable height-to-width ratio. This means that a narrow-V belt can be smaller while still providing the same power transmission. These belts also have a lower mass, which reduces centrifugal forces and enables higher speeds. However, narrow-V-belts are prone to wear, but are still a popular choice in many applications.
In addition to being more durable, wrapped-V-belts have fabric-coated edges for better heat resistance. The material covering wrapped-V-belts also protects them from damage from friction and external contaminants. Unlike their rigid counterparts, these wide-V-belts have an improved lifespan and require less maintenance and downtime. These are excellent alternatives to conventional v-belts. So, what are the benefits of Wide-V-belts?
Narrow profile v-belts
When it comes to choosing the best V-belt for your needs, it is important to understand the differences between narrow profile and classical. Narrow profile V-belts are generally narrower in cross-section than classical v-belts. This makes them ideal for high-speed compact drives and light-duty applications. The following section details the differences between narrow and classical v-belts.
The tensile cords, or “cords,” are embedded into the rubber compound. These cords are the main power-transmitting component of a narrow profile v-belt. The tension cords are located at the pitch diameter of the belt cross-section and increase the tensile strength. They are typically made of steel, aramid fibers, or polyester. The core is usually made of polyurethane, but other materials can be used.
When measuring the v-belt’s width, it is important to understand the various sign-codes. Some v-belts have the wrong sign-coding schema. For example, a classical profile belt should be read as Lw = 3522 mm, while a narrow profile belt should be read as La=3553mm. A narrow profile v-belt has a steeper side-wall, which increases the wedging action. Moreover, the narrow profile v-belt has higher load capacity.
Despite their name, narrow profile v-belts are the most widely used and versatile type of v-belts. They are also the easiest to install. Their general size is similar to that of a wedge, and their number is derived from their numerical prefix. A narrow profile v-belt with a 3L300 part number is 3/8″ wide and 300.0 inches long.
Wide profile v-belts
Wide profile v-belts are designed for heavy-duty applications where extreme performance is required. They are ideal for such applications due to their high-flexural strength and shock-resistance. They also come with many benefits, including good noise-reduction, increased sturdiness, and easy maintenance. This article explores the features of wide profile v-belts and how they can benefit your business.
Classical v-belts have an internal dimensional metric marking called the “CZPT.” This identifies each specific belt. Generally, this number is a combination of the normal profile size designation letter and the internal length in inches. The inside length of the v-belt is indicated on the index of the v-belt. To begin installing the v-belt, mark the floor where it will be hung. Tape the end stop marker to the first stick.
Narrow v-belts are narrower than standard wide v-belts. They are also available in raw-edge cogged profiles and are intended for light-duty applications. Narrow V-belts are also available in 4 sizes. Compared to standard wide profile v-belts, narrow v-belts are most appropriate for high-speed, compact drives. However, wide profile v-belts are generally longer than narrow V-belts.
A v-belt is composed of different types of rubber and reinforcements. It undergoes tensile and compressive stresses on both sides. The top side of a v-belt experiences longitudinal tensile force, while the bottom side is subjected to compression against a pulley. Moreover, the included angle of a v-belt section is 40 deg. Various types of v-belts are available according to their cross-sections and performance specifications.
Standard v-belts
If you are installing v-belts, you must know the right way to measure them. Many v-belts are mislabelled as classic or SPA. If you are unsure of which 1 to choose, you can refer to the standard v-belts index. The basic way to measure v-belts is by using a measuring tape or a cable tie. Using the right technique will ensure you get the right length.
A well-engineered V-belt is made from an elastomer core, which is a material that is resistant to abrasion. The elastomer core is usually composed of polyurethane, which has excellent flexural strength and shock resistance. In addition to the elastomer core, a fabric cover protects the core from wear and environmental forces. Its fabric cover is treated to form a chemical bond with the belt core, which increases the fabric’s resistance to constant bending.
The cross-section of a standard V-belt is commonly described as a trapezium, with its top and bottom sides parallel. Knowing the cross-section of a standard V-belt is essential in matching it with a pulley. It is also important to know how the v-belt is positioned on a pulley and how to select the right belt for the job.
China factory CZPT Auto Parts Belt Tensioner Pulley for F01 11287627053 near me supplier
Product Description
Product Description
Product name | Tensioner pulley |
OE number | 11287627053, 11284601379 |
Quality | OE standard |
Fits for | 7′ Series
−F01 −E71 |
Application | Auto cooling parts |
Package | Brand, neutral or customized package |
Port | HangZhou |
Payment | T/T, Western Union, PayPal, Trade Assurance |
MOQ | 10 pieces |
Packaging & Shipping
With stock… | 3-7 days |
Without stock… | 7-15 days |
Shipping | Sea, air, express, etc. |
Shipping Term | EXW HangZhou |
We supply parts for…
3 series | E30 E36 E46 E90 F30 F35 | C-Class | W202 W203 W204 | |||
5 Series | E34 E39 E60 F10 F18 | E-Class | W124 W210 W211 W212 | |||
7 Series | E32 E38 E65/E66 F01 F02 | GL | X164 X204 | |||
X1 | E84 | ML | W163 W164 | |||
X3 | E83 F25 | R | W251 V251 | |||
X5 | E53 E70 | S | W140 W220 W221 | |||
Gasket | Cylinder Head | Oil Seal | Air Filter | |||
Fuel Filter | Air Mass Meter | Belt | Starter | |||
Engine Mount | Belt Tensioner | Radiator Fan | Expansion Valve | |||
Ignition Coil | Tie Rod End | Water Pump | Thermostat | |||
Shock Absorber | Power Steering Pump | Oxygen Sensor | Stabilizer Link | |||
Oil Pump | Solenoid Valve | Axle Rod | Boll Joint | |||
Drive shaft | Window Lifter | Wheel Bolt | Gas Spring |
Company Profile
Established in 1994, HangZhou Best Auto Parts Co., Ltd. is a global and professional supplier, focusing on CZPT brand auto parts, provides chassis parts and maintenance parts which fit for German luxury cars. With more than 25 years co-operation with repair shops, distributors, agents and manufactures, we have built our global manufacturing standard and sales network over the world. Originated from Germany, CZPT adheres to the spirit of craftsmanship, providing safe, high quality and trusted auto parts. We believe that we should shoulder the responsibility and mission on revitalizing Chinese national automotive parts industry, and make CZPT famous in the world.
Certifications
FAQ
Q1: What’s your advantages?
1. Reasonable price and reliable quality;
2. Two years or 60,000 kilometers warranty (For chassis parts only, please ask for the range);
3. Satisfying and swift after-sale service;
4. Quick and safe modes of payment;
5. Ships items timely and quickly.
Q2: To which places have you exported?
Africa, South America, Asia, middle east and so on.
Q3: What products you sell right now?
1. Suspension parts series;
2. Brake system parts series;
3. Engine cooling parts series;
4. Electronic parts series;
5. Steering parts and links series;
6. Drive shaft series;
7. Oil and fuel series (Filters, pumps, etc.)
8. Mounting parts series (Engine mount, transmission mount, etc.)
Q4: How to guarantee the quality of your product?
1. Strict inspection during production;
2. Recheck the products before shipment;
3. Track and receive feedback from our customers.
Q5: How about your delivery time?
7-25 Days after receiving your payment.
How to Repair a Timing Belt Tensioner
Your timing belt tensioner is a critical component of your vehicle’s drivetrain. Too little tension, for example, will cause the belt to slip, and too much tension can overload shaft bearings, leading to premature failure. If you notice that your belt tensioner is not working properly, you should immediately visit a mechanic. Corrosion from road splash, dirt, mud, or other debris can jam the tensioner housing. To avoid this, make sure that you replace your timing belt tensioner as soon as possible.
Symptoms of a bad belt tensioner
If you’ve ever wondered what signs indicate a bad belt tensioner, look no further than your vehicle’s engine. Worn belts or a broken tensioner can cause an irritating squealing noise, as well as the belt to slip. Even worse, a bad tensioner can cause water to enter the belt and pulley, resulting in water damage. A worn tensioner is usually the culprit of the noise, but there are also other warning signs that a belt is in trouble.
Your vehicle’s engine may start to run poorly or even squeal when you turn the key. Similarly, your engine may fail to start at all, or the check engine light may illuminate. The belt may also start to wear out in an unusual pattern. These signs indicate that the tensioner is in need of replacement. If you notice 1 or more of these signs, get your car checked right away.
To check the condition of the tensioner, remove the drive belt and observe the pulley. You may notice rust dripping or bleeding at the mounting bolts, which are the most common signs of a bad tensioner. If you can’t remove the drive belt, check the pulley by rotating it. If you feel resistance, the pulley is likely worn or slack.
Failure of the belt tensioner will also cause other parts of the car to fail. If a bad belt tensioner isn’t fixed quickly, you might not be able to use the vehicle properly. You could end up breaking your car’s engine, losing power steering, and possibly even the water pump. If your car is not running right, you could be stuck in the middle of nowhere. Even if the alternator doesn’t work, you’ll still have a malfunctioning power steering system and a dead AC system.
A broken timing belt tensioner can cause strange noises or a no-start condition. These noises and symptoms are signs of a bad belt tensioner, and you’ll have to replace it ASAP. If you don’t know what symptoms mean, don’t hesitate to take your car to a mechanic. You’ll be surprised how easy it is to check this vital component and save yourself a bunch of money.
Components of a belt tensioner
The components of a belt tensioner assembly consist of 4 key components. The clearance between the pulley and the base is critical to the tensioner’s operation. If the tensioner is installed incorrectly, the spring can break and cause severe injury. The spring’s preload and powerful force make it difficult to service the unit safely. These parts are non-serviceable. If you are unsure of how to repair your tensioner, contact an authorized mechanic.
The components of a belt tensioner drive are shown in FIG. 2. The rotor shaft is connected to the drive screw, while the second transmission is connected to the gear shaft. The rotor and gear shaft are in parallel with each other. The gear shaft and worm wheel are connected to the belt tensioner drive. In other words, the belt tensioner drive is located in the B-pillar of the motor vehicle.
A belt tensioner may be equipped with a drive shaft and electric motor. The drive shaft may also contain a worm gear or worm wheel. The drive shaft also has an intermediate gearbox. Once the tensioner is set, it is ready to move to its safe-position position. It is a relatively simple and inexpensive replacement for your belt. When replacing a multi-ribbed belt, be sure to replace the tensioner along with the belt. Gates recommends replacing all wear parts at once.
In the event of a faulty drive belt tensioner, the belt will not stay taut. The pulley can wobble and cause the belt to fray. In addition to this, the bearings can cause a loud squealing noise. In this case, the accessory motors will continue to run, while the belt itself will not. Therefore, replacing the timing belt tensioner is an important part of maintaining the car.
In some systems, the belt tensioner uses a worm gear as the first gear. This results in rolling engagement of the screw’s teeth. This reduces noise and vibrations, while maximizing the efficiency of the belt tensioner drive. Additionally, a worm gear can eliminate the need for additional parts in belt tensioners. While this may not be practical in all instances, it is a good choice for space-constrained environments.
Repair options for a timing belt tensioner
A timing belt tensioner is an essential part of an automobile’s timing chain and is responsible for ensuring proper timing. Proper alignment of timing marks is essential to the proper operation of the engine, and improper alignment may lead to damage to the engine. To repair a timing belt tensioner, there are several repair options available. First, you need to remove the engine cover. You can then remove the timing belt tensioner by loosening the pulley using a ratchet or breaker bar.
When the timing belt isn’t properly tensioned, the engine will misfire. The engine misfires when the valve opens and the pistons rise at the wrong time. When this happens, the timing belt cannot properly grip the gears and the engine will not function. If this part fails, you’ll have to replace the whole timing chain. However, if you are handy with tools, you can easily replace the entire timing belt tensioner yourself.
If your timing belt tensioner is out of alignment, you should replace it. If you’re not sure whether it needs to be replaced, check it with a professional and learn the details of the repair. The timing belt tensioner is the most critical part of the engine, so it’s important to know about it. Otherwise, your car won’t run as well as it could. Repair options for a timing belt tensioner will vary depending on the severity of the problem and how much damage it has done.
While there are several repair options for a timing belt tensioner, the average cost of replacement is $364 to $457, and this doesn’t take into account any tax or fee you may be charged. DIY repair methods will usually cost you $50 to $150, and you’ll likely save a lot of money in the process. However, you need to remember that you may be unable to do the job yourself because you don’t know how to use the proper tools and equipment.
While it is not difficult to replace a timing belt tensioner on your own, you should know that you’ll need to remove other parts of the engine as well as special tools to make the repair properly. This is an advanced repair job and requires a great deal of skill. If you’re new to home car repair, you may not want to attempt it yourself. There are many other options, such as hiring a mechanic.
Installation instructions
While there are no universal installation instructions for belt tensioners, the manufacturer of your car may provide detailed instructions. Before attempting to replace your tensioner, read the manufacturer’s recommended procedures carefully. To install a new tensioner properly, unload the old 1 and take a picture or sketch of how the belt should be routed. Once the old tensioner is out, follow the manufacturer’s torque specifications. Make sure to unload and remove the belt from the tensioner, and follow the manufacturer’s torque specifications to install the new one.
If your car comes with a manual belt tensioner, you can follow the instructions. The manual will have a corresponding guide for installation. When installing a belt tensioner, make sure the manual clearly states the static tension for your particular model. Check that it is in line with the engine relief to ensure proper belt tension. You can then use a 6mm allen key to turn the tensioner clockwise and counterclockwise. Once it is in position, release the tensioner to operate. The belt tensioner should now apply the proper tension to your belt.
Before installing a new belt tensioner, make sure you read the manual completely. You should follow these steps carefully to avoid any problems with the tensioner. If the tensioner has failed, you must replace it immediately. A new belt tensioner will help you ensure proper performance of your accessory belt drive system. If you are installing a new multi-ribbed belt, you should replace the tensioner as well. However, it is important to note that replacing the belt tensioner is a complicated process and requires a mechanic to be able to safely remove the belt from the engine.
To install a second stage drive belt, walk the belt onto the input drive and generator. Ensure that the belt is seated properly in the grooves of the pulleys. Next, replace the input drive belt and right and left Drive Disk covers. Test the machine to ensure that it is working properly. If it doesn’t, replace the original drive belt. After installing the new belt, you may want to read the manual again to make sure it is in perfect condition.
China wholesaler CZPT Auto Parts Tensioner Pulley V-Ribbed Timing Belt OEM 11287838797 / 11281722789 for BMW E36 E46 E34 E83 with Best Sales
Product Description
Item Name | Frey Auto Parts Tensioner Pulley Complete V-Ribbed Timing Belt Tensioner Belt Xihu (West Lake) Dis. Pulley Tensioning/11281722789 |
OEM Number | 11287838797/11281722789 |
Car model | M52 M54 E60 E61 E46 |
Brand | Frey |
Warranty | 1 Year / 12 Month |
Packing | Frey Brand Packing or as Customer’s Requirements |
MOQ | 100pcs |
Payment | T/T , L/C , Western Union , MoneyGram , Master Card & Credit Card & Cash/ PayPal |
Delivery |
1-5days for stock items; 15-30days for the items need produced. |
Certificate | TUV, SGS |
How to Tell If Your Timing Belt is Worn Out
The timing belt is a component of your engine that consists of special materials that coordinate the rotational movement of your camshaft and crankshaft. This synchronization is vital for sustainable combustion. In addition to being vital for the proper operation of your engine, the belt is also responsible for setting the pace at which it will turn. Timing belts must be extremely strong and resilient, able to maintain a high degree of synchronicity, and operate effectively even in the most severe conditions.
Problems caused by a worn-out timing belt
A worn-out timing belt can cause misfiring. Because the belt controls the movement of the pistons in the engine, it’s critical that it’s functioning properly. Misfires can cause serious engine damage and should be fixed as soon as possible. But how do you know if your timing belt is worn out? Here are 3 of the most common symptoms of a worn-out belt.
A car engine will misfire if the timing belt is broken, which could lead to severe damage. A broken belt may also cause excessive smoke to be produced by the exhaust system. If these symptoms are present, it’s time to take the car in for a timing belt replacement. A worn-out belt will affect the performance of your car. It will also affect the engine’s starting speed. When it’s time to replace it, you should do it now to avoid future problems.
Misfiring and premature cylinder closing are 2 of the most common symptoms of a worn-out timing belt. A worn-out belt can cause permanent engine damage. Because the timing belt contains teeth that grip the gears, it can slip. If the timing belt slips, the teeth can fall into the gears, causing the engine to misfire. Worn-out timing belts can also cause the engine to stall.
Engine ticking is another common sign of a worn-out timing belt. It can also be caused by low oil pressure. When oil pressure drops, the timing belt will become loose and cause a ticking sound. You should replace the timing belt as soon as it’s damaged. But it’s not enough if you don’t notice any of these signs right away. If the ticking sound continues, you’ll probably have an engine-related problem.
Types of timing belts
Timing belts are made of special materials that help the engine synchronize the crankshaft’s rotation with the camshaft’s. This precision is vital for the combustion process, as it ensures the proper opening and closing of the valves within the combustion chamber. The belts control the engine’s pace, which is why they must be strong enough to maintain synchronicity and operate at high speeds. However, timing belts do not come cheap, so there are several factors that you should be aware of before buying one.
First, timing belts come in different pitch sizes. A typical metric pitch is 5 millimeters, but some manufacturers use a higher or lower pitch. The pitch determines how much tension the belt will be able to carry and whether or not it will wear out prematurely. Other pitch sizes are more common. Timing belts come in 3 different widths, and they all have different tooth profiles. To find the right 1 for your engine, you need to know the pitch.
Modified curvilinear belts are made of 2 different types of materials. They combine the strengths of trapezoidal and curvilinear belts. The outer surface of these belts has a steeper angle than the belt’s teeth, which means that the power transmitted by the motor is much higher. Consequently, they are the primary choice for high-performance industrial applications. A synchronous timing belt is ideal for applications where precise synchronization of the driven and driver shafts is important.
Spliced and welded timing belts are used in many general applications. These belts typically have no joints or weak points and are more durable. These types of timing belts are also made with a smooth back and sealed edges. If you need a custom length or shape, these can also be manufactured. Then, you can order them for your exact measurements. When you need a new timing belt, you can simply ask for a quote and order 1 online.
Common problems
Timing belts are a crucial part of your car’s drive system, and improper installation can cause a whole host of issues. It is also susceptible to crimping and premature wear. In either case, it is vital to take action early to prevent excessive engine wear and extend the life of the timing belt. Here are some common problems with timing belts. You may be surprised to learn that these problems are often caused by common car maintenance practices.
Regardless of the cause of the problem, a worn or faulty timing belt will affect the engine’s timing. This may result in misfires or excessive exhaust release. Engine misfiring is a serious sign that something is amiss. Depending on the extent of the problem, it could even lead to engine damage. If you experience erratic performance or excessive smoke, it’s likely the timing belt is faulty. Here are some common problems with timing belts and their causes.
Engine misfire is a common warning sign that your timing belt is wearing. This occurs when the timing belt slips off the gears or camshaft, causing the cylinder to open too early. If you notice this problem, take immediate action by visiting your mechanic immediately. Moreover, timing belt failures can cause a large amount of damage to your car’s engine, so it is essential to have your timing belt replaced in time.
Improperly adjusting the tension of your timing belt can also lead to serious problems. This can cause excessive wear on your engine’s pistons and valves, and damage the engine. Ultimately, a damaged timing belt may result in an expensive engine rebuild. While this might seem like a good option, it is not always the most practical solution. Ultimately, your car’s timing belt will wear down if you don’t fix these problems immediately.
Symptoms of a worn-out timing belt
If your car’s engine makes a high-pitched squeal when you start or run it, you may be experiencing a worn-out timing belt. You can check the belt by opening the hood and listening closely to the noise. You may also notice uneven RPM counts. The squealing sound can be caused by a number of factors, such as low oil pressure, engine lubrication problems, or even the timing belt.
If your car is exhibiting these symptoms, then it’s time for a replacement. A timing belt breaks down while your engine is running, and this can cause major engine damage. The timing belt is connected to the crankshaft and camshaft by a belt that keeps the 2 parts in sync rotation. When the timing belt wears out, it may cause a jump in the belt’s tooth, causing cylinders to open and close randomly, resulting in blow-by.
A timing belt is crucial to the functioning of your car’s engine. It synchronizes the engine rotation system and opens and closes the valves at the right time. Because it is subject to great forces inside the engine, the belt must be replaced at some point. Every vehicle needs a new timing belt at least once in its lifecycle. But what are the symptoms of a worn-out timing belt?
The timing belt is crucial to your car’s performance, so if you notice any of these signs in your vehicle, you should make an appointment with a qualified mechanic. The best way to tell if your timing belt needs to be replaced is to visually inspect the belt. You can visually inspect the belt while the engine is off, and if you notice it’s sagging, you should replace it.
When to replace a timing belt
A timing belt is an essential part of your vehicle’s engine and is responsible for synchronizing the rotation system, allowing the valves to open and close at the correct time. Due to its constant use and great forces inside the engine, timing belts must be replaced at some point. The recommended interval for timing belt replacement is anywhere from 60,000 to 150,000 miles. In most cases, timing belt replacement is recommended for vehicles between 6 and 10 years old.
Costs for a timing belt replacement can vary widely depending on the make and model of your vehicle. The labour and parts used for timing belt replacement are relatively inexpensive, but you’ll have to remove several parts of your engine to access them. Timing belt replacement also involves replacing the water pump, which is driven by the timing belt. These other parts will be replaced with new ones, but the overall cost of the repair depends on the type of car you drive.
A timing belt is a thin, rubber piece that runs along the front of the engine. It’s responsible for synchronizing the valves and camshafts and is an important component of an engine. The belt’s custom teeth make it easy to see when it’s time to replace your car’s timing belt. Oftentimes, car manufacturers recommend timing belt replacement every 2 to 4 years or 50,000 miles, and they’re not the only ones who recommend it.
A professional mechanic can replace the timing belt and water pump in 1 service, saving you both time and money. Timing belt replacement is an intricate task and can last anywhere between 4 and 8 hours, depending on the make and model of your car. However, it is worth it if you can get your vehicle into a garage or repair shop sooner rather than later. You can save a lot of money on labor costs by replacing your timing belt and water pump yourself.