Tag Archives: engine pulley

China Standard Auto Engine Parts Belt Tensioner Pulley Assy 25281-2f000 for CZPT CZPT 25281-2f001/25281-2f002 Tensioner Assy as thru axle

Product Description


Key attributes :

OE NO. 25281-2F000

Basic Information :

Place of Origin  HangZhou,China Brand Name C&Z
Application Hyundai/Kia CAR BODY Material Steel
Quality High Qulity Delivery time 3-7 Days
Package Customer’s Special Demands Condition 100%new
OEM 25281-2F000 Supply Ability 1000 Piece/Pieces per Week

Our Advantages:

1. Korea’s technology, China’s factory price
2. Ex factory price, so that you have enough profit
3. Hub bearing inventory, fast delivery
4. Korean auto parts supplier. Many years of experience in auto parts technology, dedicated professional worthy of your trust
 

What others we supply for Hyundai KIA :

Engine parts Valve chamber cover system and oil pan
Engine timing belt
Timing chain kit
Oil pumps
Engine water pump
Full gasket set
Oil Dipstick
Chassis parts Suspension system
Tie rod ends
Ball joints
Stabilizer link
Wheel hub bearing
Electrical parts Trunk release switch
Wheel speed sensor cover
Cooling system
Transmission system
Ungrouped

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 6 Monthes
Type: Tensioner Bearing
Material: Stainless Steel
Tolerance: as Original
Certification: ISO9001, TS16949
Samples:
US$ 8.2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

belt tensioner

What are the reliability and durability aspects of belt tensioners in ensuring consistent belt tension?

Belt tensioners play a crucial role in ensuring consistent belt tension in belt-driven systems. The reliability and durability of belt tensioners are essential factors in maintaining optimal belt performance and preventing issues such as slippage, excessive wear, or premature failure. Here’s a detailed explanation of the reliability and durability aspects of belt tensioners in ensuring consistent belt tension:

  • Design and Construction:
  • The design and construction of belt tensioners are critical for their reliability and durability. High-quality materials, precision engineering, and robust construction techniques are employed to ensure that tensioners can withstand the forces and loads encountered in belt-driven systems. The design should incorporate features that minimize stress concentrations, prevent premature wear, and provide long-lasting performance.

  • Load Capacity:
  • Belt tensioners must have adequate load capacity to handle the tension forces exerted by the belt system. A properly sized tensioner will allow for the consistent application of the desired tension level, even under varying loads and operating conditions. Insufficient load capacity can lead to insufficient tension, resulting in belt slippage, reduced power transmission, and potential system failure.

  • Resistance to Wear and Fatigue:
  • Reliable belt tensioners are designed to resist wear and fatigue over extended periods of operation. They should be able to withstand the continuous movement and contact with the belt without experiencing excessive wear or deformation. High-quality materials, surface treatments, and lubrication mechanisms may be employed to enhance the tensioner’s resistance to wear and fatigue.

  • Corrosion and Contamination Resistance:
  • Belt tensioners in certain environments may be exposed to corrosive substances, moisture, or contaminants such as dust and debris. To ensure reliability and durability, tensioners can be designed with corrosion-resistant materials, protective coatings, or sealing mechanisms. These features help prevent the degradation of tensioner components and maintain their performance in challenging operating conditions.

  • Temperature Stability:
  • Temperature fluctuations can affect the performance and longevity of belt tensioners. Reliable tensioners are engineered to withstand the temperature extremes commonly encountered in industrial or automotive applications. They may incorporate materials with high-temperature resistance or thermal management mechanisms to maintain consistent performance and prevent thermal degradation.

  • Lubrication and Friction Management:
  • Proper lubrication and friction management are crucial for the reliable operation of belt tensioners. Lubricants or bearing configurations are employed to minimize friction, reduce wear, and prevent premature failure. Adequate lubrication and friction management contribute to the consistent operation and longevity of the tensioner, ensuring optimal belt tension over time.

  • Maintenance and Inspection:
  • Regular maintenance and inspection are essential for ensuring the reliability and durability of belt tensioners. Periodic checks for signs of wear, proper alignment, and tension adjustment are necessary to identify potential issues and take corrective measures. Following the manufacturer’s recommended maintenance schedule and procedures helps prolong the life of the tensioner and maintain consistent belt tension.

In summary, the reliability and durability of belt tensioners are crucial for ensuring consistent belt tension in belt-driven systems. The design and construction of tensioners, their load capacity, resistance to wear and fatigue, corrosion and contamination resistance, temperature stability, lubrication and friction management, as well as regular maintenance and inspection, all contribute to their ability to maintain optimal belt tension over time. By selecting high-quality tensioners and following proper maintenance practices, consistent belt tension can be achieved, leading to reliable and efficient operation of belt-driven systems.

belt tensioner

Can belt tensioners be customized or modified for unique industrial or automotive needs?

Belt tensioners can indeed be customized or modified to meet unique industrial or automotive needs. The design and functionality of belt tensioners can be adapted to specific requirements, allowing for greater versatility and compatibility in various applications. Here’s a detailed explanation of how belt tensioners can be customized or modified for unique needs:

  • Tensioner Design:
  • The design of belt tensioners can be customized to accommodate different space constraints, mounting configurations, and belt drive layouts. Manufacturers can offer various tensioner designs, including compact tensioners, offset tensioners, or multi-belt tensioners, to address specific installation requirements. By adapting the tensioner design, it becomes possible to integrate the tensioner seamlessly into unique industrial or automotive systems.

  • Tensioner Material:
  • Belt tensioners are typically constructed using durable materials such as cast iron, steel, or aluminum. However, for specific applications that involve extreme temperatures, corrosive environments, or weight considerations, the tensioner material can be customized. For example, in high-temperature environments, tensioners can be made from heat-resistant alloys or ceramics. Customizing the tensioner material ensures optimal performance and longevity in unique operating conditions.

  • Tensioner Force and Range:
  • The tensioning force and tension range of belt tensioners can be tailored to suit specific applications. Different industrial or automotive systems may require varying tension levels based on factors like load requirements, operating conditions, or desired power transmission efficiency. Manufacturers can customize the tensioner force and range to match these specific needs, ensuring the proper tension is maintained in the belt drive system.

  • Tensioner Damping and Vibration Control:
  • Customized belt tensioners can incorporate damping and vibration control features to address specific noise and vibration requirements. In applications where noise reduction or vibration dampening is critical, tensioners can be modified with additional components or materials to absorb or dampen vibrations, resulting in smoother and quieter operation.

  • Environmental Considerations:
  • Specialized belt tensioners can be customized for unique environmental conditions. For instance, in applications exposed to high levels of dust, moisture, or chemicals, tensioners can be modified with protective coatings, seals, or materials that enhance resistance to corrosion, abrasion, or contamination. By customizing the tensioners to withstand harsh environments, their performance and service life can be optimized.

  • Integration with Monitoring Systems:
  • In some cases, belt tensioners can be modified to integrate with monitoring systems or sensors. This customization allows for real-time monitoring of belt tension and condition, enabling proactive maintenance or automated adjustments. Integration with monitoring systems provides enhanced control and efficiency, particularly in critical industrial or automotive applications.

In summary, belt tensioners can be customized or modified to meet unique industrial or automotive needs. Customization options include adapting the tensioner design, selecting appropriate materials, adjusting the tensioning force and range, incorporating damping and vibration control features, considering environmental factors, and integrating with monitoring systems. By customizing belt tensioners, they can be optimized for specific applications, ensuring reliable performance and longevity in diverse operating conditions.

belt tensioner

Are there specific belt tensioner designs for different applications, like automotive or industrial equipment?

Yes, there are specific belt tensioner designs tailored for different applications, including automotive and industrial equipment. Manufacturers develop specialized belt tensioners to meet the unique requirements and operating conditions of various industries. Here’s a detailed explanation of specific belt tensioner designs for different applications:

  1. Automotive Belt Tensioners:
  2. Belt tensioners used in automotive applications are designed with features that address the specific needs of the automotive industry. They are typically compact, lightweight, and engineered to withstand the demanding conditions found in vehicle engines. Automotive belt tensioners often incorporate automatic tensioning mechanisms, such as spring-loaded or hydraulic designs, to provide continuous tension control and compensate for belt elongation and wear over time. They also incorporate features like torsional vibration dampers to minimize vibrations and noise. Additionally, automotive belt tensioners undergo rigorous testing to meet industry standards and ensure reliable performance in diverse driving conditions.

  3. Industrial Belt Tensioners:
  4. Industrial belt tensioners are designed to meet the requirements of heavy-duty applications in various industries, such as manufacturing, material handling, mining, and construction. These tensioners are built to withstand high loads, harsh environments, and extended operating hours. Industrial belt tensioners often feature robust construction using durable materials like cast iron or steel. They may incorporate automatic tensioning mechanisms, hydraulic systems, or eccentric designs to provide precise tension control and adaptability to changing operating conditions. Industrial belt tensioners also come in a range of sizes and configurations to accommodate different belt sizes and drive systems used in industrial machinery.

  5. Agricultural Belt Tensioners:
  6. Agricultural equipment, such as tractors, combines, and harvesters, have specific belt tensioner designs suited for the demanding conditions encountered in farming operations. Agricultural belt tensioners are designed to withstand dust, debris, and exposure to outdoor elements. They often incorporate automatic tensioning mechanisms with robust spring-loaded systems to compensate for belt wear and maintain optimal tension during extended periods of use. These tensioners are engineered to provide reliable performance in agricultural machinery, contributing to efficient power transmission and reduced maintenance requirements.

  7. HVAC and Refrigeration Belt Tensioners:
  8. Belt tensioners used in HVAC and refrigeration systems are designed to ensure reliable and efficient operation of fans, blowers, compressors, and pumps. These tensioners are typically compact and incorporate automatic tensioning mechanisms to maintain consistent belt tension under varying operating conditions. They may also include features like vibration dampening to reduce noise and enhance system performance. HVAC and refrigeration belt tensioners are engineered to meet the specific requirements of cooling and ventilation systems, contributing to energy efficiency and prolonged equipment lifespan.

  9. Specialized Belt Tensioners:
  10. There are also specialized belt tensioners designed for specific applications or industries. For example, in the woodworking industry, belt tensioners with quick-release mechanisms are used to facilitate efficient belt changes. In the textile industry, belt tensioners with precise tension control are employed to ensure proper synchronization of moving parts. Marine propulsion systems utilize belt tensioners designed for marine environments, resistant to corrosion and capable of withstanding vibration and shock. These specialized tensioners are tailored to the specific needs of their respective industries, incorporating features and materials that optimize performance and durability.

Overall, the design of belt tensioners is influenced by the unique requirements of different applications and industries. By considering factors such as load capacity, environmental conditions, tension control mechanisms, and specific industry standards, manufacturers develop belt tensioners that are well-suited for their intended applications, ensuring optimal belt performance and system reliability.

China Standard Auto Engine Parts Belt Tensioner Pulley Assy 25281-2f000 for CZPT CZPT 25281-2f001/25281-2f002 Tensioner Assy   as thru axleChina Standard Auto Engine Parts Belt Tensioner Pulley Assy 25281-2f000 for CZPT CZPT 25281-2f001/25281-2f002 Tensioner Assy   as thru axle
editor by CX 2024-04-25

China Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX) axle cost

Product Description

MIC NO. OEM.NO APPLICATION YEAR PHOTO
TB34PG9301 957726
082990
9642929880
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW)         
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC)         
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW)         
CITROEN  C2 (JM_) 1.1         
CITROEN  C2 (JM_) 1.4         
CITROEN  C3 I (FC_, FN_) 1.1 i         
CITROEN  C3 I (FC_, FN_) 1.4 i         
CITROEN  C3 I (FC_, FN_) 1.4 i Bivalent         
CITROEN  C3 II (SC_) 1.1 i         
CITROEN  C3 II (SC_) 1.4         
CITROEN  C3 Pluriel (HB_) 1.4         
CITROEN  NEMO Box (AA_) 1.4         
CITROEN  NEMO Estate 1.4         
CITROEN  SAXO (S0, S1) 1.1 X,SX         
CITROEN  XSARA (N1) 1.4 i         
CITROEN  XSARA Break (N2) 1.4 i         
CITROEN  XSARA Coupe (N0) 1.4 i         
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A)         
FIAT  QUBO (225_) 1.4 (225AXA1A)         
PEUGEOT  1007 (KM_) 1.4         
PEUGEOT  106 II (1A_, 1C_) 1.1 i         
PEUGEOT  206 Hatchback (2A/C) 1.1         
PEUGEOT  206 Hatchback (2A/C) 1.1 i         
PEUGEOT  206 Hatchback (2A/C) 1.4 i         
PEUGEOT  206 Hatchback (2A/C) 1.4 LPG         
PEUGEOT  206 Saloon 1.4         
PEUGEOT  206 SW (2E/K) 1.1         
PEUGEOT  206 SW (2E/K) 1.4         
PEUGEOT  206+ (2L_, 2M_) 1.1         
PEUGEOT  206+ (2L_, 2M_) 1.4 i         
PEUGEOT  207 (WA_, WC_) 1.4         
PEUGEOT  207 SW (WK_) 1.4         
PEUGEOT  306 (7B, N3, N5) 1.1         
PEUGEOT  306 (7B, N3, N5) 1.4 SL         
PEUGEOT  306 Break (7E, N3, N5) 1.4         
PEUGEOT  306 Hatchback (7A, 7C, N3, N5) 1.1         
PEUGEOT  307 (3A/C) 1.4         
PEUGEOT  BIPPER (AA_) 1.4         
PEUGEOT  BIPPER Tepee 1.4         
PEUGEOT  PARTNER Box (5_, G_) 1.1         
PEUGEOT  PARTNER Box (5_, G_) 1.4         
PEUGEOT  PARTNER Box (5_, G_) 1.4 BiFuel         
PEUGEOT  PARTNER Combispace (5_, G_) 1.1         
PEUGEOT  PARTNER Combispace (5_, G_) 1.4
1996-2008
2002-2011
1996-2011
2003-2005
1996-2008
2002-2011
1996-2011
2003-2008
2003-2012
2003-2009
2002-
2002-2571
2002-
2009-2013
2009-2016
2003-
2008-
2009-
1996-2003
1997-2005
1997-2005
1998-2005
2007-
2008-
2005-
1996-2004
1998-2000
1998-2007
1998-2012
2006-2007
2007-
2002-
2002-2007
2009-2013
2009-2013
2006-2013
2007-2012
1994-2001
1994-2001
1997-2002
1993-2001
2000-2003
2008-
2008-
1996-2005
1996-2015
2003-2006
1996-2002
1996-2015

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: One year
Car Make: CITROEN
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

Can you describe the various mounting options and installations for belt tensioners in different settings?

Mounting options and installations for belt tensioners can vary depending on the specific application and the belt-driven system’s design. Different settings may require different approaches to ensure proper alignment, tensioning, and functionality of the tensioner. Here’s a detailed description of the various mounting options and installations for belt tensioners in different settings:

  • Fixed Mounting:
  • The most common mounting option for belt tensioners is fixed mounting. In this configuration, the tensioner is rigidly attached to a stationary part of the system, such as the engine block or a structural component. Fixed mounting provides stability and ensures that the tensioner remains in a fixed position relative to the belt. It is widely used in automotive, industrial, and machinery applications.

  • Adjustable Mounting:
  • In some applications, adjustable mounting options are preferred to accommodate variations in belt length, alignment, or tension requirements. Adjustable tensioners allow for fine-tuning of the tensioning force by enabling adjustments in the tensioner’s position. This can be achieved through slots, elongated holes, or adjustable brackets that provide flexibility in the tensioner’s placement. Adjustable mounting is beneficial when precise tension adjustment is necessary or when belt drives undergo frequent changes.

  • Spring-Loaded Tensioners:
  • Spring-loaded tensioners are commonly used in belt-driven systems. These tensioners incorporate a spring mechanism that applies constant tension to the belt. Spring-loaded tensioners can be mounted in various configurations, including fixed or adjustable mounting. The spring mechanism compensates for belt elongation, wear, or thermal expansion, ensuring consistent tension throughout the belt’s operational life.

  • Idler Pulley Tensioners:
  • Idler pulley tensioners utilize an additional pulley to redirect the belt’s path and apply tension. The tensioner is typically mounted on an adjustable bracket or arm, allowing for precise positioning of the idler pulley relative to the belt. Idler pulley tensioners are often used in serpentine belt systems, where multiple accessories are driven by a single belt. Proper alignment and tensioning of the idler pulley are crucial for efficient power transmission and belt longevity.

  • Hydraulic Tensioners:
  • Hydraulic tensioners employ a hydraulic cylinder or piston to apply tension to the belt. These tensioners are commonly used in applications where high tension forces or dynamic tension control is required. Hydraulic tensioners may have specific mounting requirements due to the need for hydraulic connections, such as hoses or fittings. They are often used in heavy-duty machinery, automotive engines, or other systems demanding precise tension control.

  • Overhead Tensioners:
  • In certain settings, such as conveyor systems or overhead power transmission systems, belt tensioners may be mounted overhead. Overhead tensioners are typically suspended from a support structure, allowing the tensioner to apply tension to the belt from above. This configuration helps maximize space utilization and facilitates maintenance and belt replacement in vertically-oriented systems.

  • Combination Mounting:
  • In complex belt-driven systems, a combination of mounting options may be employed. For example, a fixed tensioner may be used in one location, while an adjustable tensioner is used in another to accommodate different belt lengths or alignment requirements. Combination mounting allows for customized tensioning solutions tailored to the specific system design and operational needs.

It is important to note that the specific mounting option and installation for a belt tensioner will depend on the system’s design, space constraints, belt type, and the manufacturer’s recommendations. It is essential to follow the manufacturer’s guidelines and specifications for proper tensioner installation to ensure optimal performance and longevity of the belt-driven system.

In summary, the mounting options and installations for belt tensioners can include fixed mounting, adjustable mounting, spring-loaded tensioners, idler pulley tensioners, hydraulic tensioners, overhead tensioners, and combinations thereof. Each mounting option offers advantages and considerations depending on the application’s requirements and the specific belt-driven system’s design.

belt tensioner

How do belt tensioners contribute to reducing vibrations and noise in machinery?

Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here’s a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:

  • Stabilizing Belt Movement:
  • Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.

  • Minimizing Belt Resonance:
  • Belt resonance refers to the phenomenon where a belt’s natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.

  • Damping Vibrations:
  • Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner’s design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.

  • Reducing Belt Slippage:
  • Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.

  • Minimizing Belt Flapping:
  • When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.

  • Promoting Stable Rotational Motion:
  • A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.

In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.

belt tensioner

Can you describe the various types of belt tensioners, such as automatic or manual tensioners?

There are various types of belt tensioners available, each designed to fulfill specific requirements in maintaining belt tension. Here’s a description of the different types of belt tensioners:

  1. Manual Belt Tensioners:
  2. Manual belt tensioners are the most basic type and require manual adjustment to set and maintain the desired tension. They typically consist of an adjustable arm or bracket that can be moved to increase or decrease the tension in the belt. Manual tensioners are commonly used in applications where tension adjustments are infrequent or can be easily accessed for manual adjustment. They are simple, cost-effective, and widely used in various industries.

  3. Automatic Belt Tensioners:
  4. Automatic belt tensioners, also known as self-adjusting or spring-loaded tensioners, are designed to maintain the proper tension automatically. They incorporate a spring mechanism that applies constant tension to the belt, compensating for belt elongation and wear over time. Automatic tensioners are commonly used in applications where frequent manual adjustments are impractical or where consistent tension control is essential. They provide convenience, minimize maintenance requirements, and ensure optimal tension without the need for manual intervention.

  5. Hydraulic Belt Tensioners:
  6. Hydraulic belt tensioners utilize hydraulic pressure to maintain belt tension. They consist of a hydraulic cylinder or piston that applies force to the tensioner arm, adjusting the tension in the belt. Hydraulic tensioners are commonly used in applications with high load requirements or variable operating conditions. They provide precise tension control, can compensate for changes in temperature and load, and are often employed in heavy-duty industrial machinery and automotive applications.

  7. Eccentric Belt Tensioners:
  8. Eccentric belt tensioners use an eccentric mechanism to adjust the tension in the belt. They typically feature an eccentric pulley or roller that can be rotated to increase or decrease the tension. Eccentric tensioners are commonly used in applications where precise tension adjustments are required, such as high-performance engines or systems with specific belt tension specifications. They offer fine-tuning capabilities and are often found in automotive racing, performance tuning, and specialized machinery.

  9. Idler Pulley Tensioners:
  10. Idler pulley tensioners, also known as fixed tensioners or idler pulley assemblies, are a type of belt tensioner that utilizes an idler pulley to maintain tension. They are typically positioned on the slack side of the belt, providing guidance and tension control. Idler pulley tensioners are commonly used in applications where a fixed tension is desired, and the tensioning capability is provided by other components in the system, such as an automatic tensioner or an adjustable drive pulley.

In addition to these types, there are also specialized belt tensioners designed for specific applications or industries, such as torsional vibration dampers used in automotive engines to reduce vibrations, or belt tensioners with built-in dampening mechanisms to minimize noise in certain applications.

Overall, the choice of belt tensioner depends on factors such as the application requirements, load conditions, frequency of tension adjustments, and the desired level of automation and control. Selecting the appropriate type of belt tensioner is crucial to maintaining optimal belt tension and ensuring the efficient and reliable operation of belt-driven systems.

China Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)   axle costChina Standard OEM 957726 082990 9642929880 Auto Spare Parts Engine Pulley Belt Tensioner for CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)   axle cost
editor by CX 2024-03-27

China Hot selling Engine Belt Tensioner Pulley Apv2473 1398619 for Daf Truck axle carrier

Product Description

Product Parameters

Product Name Engine Belt Tensioner pulley APV2473 1398619 for DAF TRUCK
MOQ 1 pcs
OE NO. As original
Size Same as OE
Warranty 12 Months
Specification OEM Standard
Sample Yes
Certification TS16949

Our customer’s satisfaction is our main concern.
1. ONE year warranty be offered.
You have the right to return the good within 1 year,
we will replace any defective part with a new 1 or refund the complete amount within 1 week.
2.100% ensure that products be tested before shipping out.
Welcome to contact us for further information,  Click to contact us>>

Detailed Photos

 

 

Company Profile

Packaging & Shipping

FAQ

Q1. What is your terms of packing? 
A: Generally, the goods is packed in neutral white boxes or brown cartons.
If you have legally registered patent,  the goods can be packed in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment? 
A: T/T 30% as deposit, and 70% before delivery. The photos of the products and packages will be showed to you before  the balance.

Q3.What is your terms of delivery? 
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time? 
A: Generally, it will take 30 days after receiving  advance payment.
The specific delivery time depends on the items and the quantity of the order.

Q5. Can you produce according to the samples? 
A: Yes, developing based on your samples or technical drawings is available. 

Q6. What is your sample policy? 
A: The sample can be supplied if the parts in stock, but the customers have to pay  the courier cost.

Q7. Do you test all your goods before delivery? 
A: Yes,  100% test before delivery

Q8: How do you make our business long-term and good relationship? 
A:1. Good quality and competitive price to ensure our customers benefit ; 
    2. We respect every customer as our friend and we sincerely do business and make friends with them,no matter where they come from.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year After Delivery
Warranty: 1 Year
Certification: ISO9001, TS16949
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|

Order Sample

As Customer′s Request
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

Can you explain the benefits of using belt tensioners in preventing slippage and optimizing power transmission in machinery?

Using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. Belt tensioners play a critical role in maintaining proper tension in the belt, ensuring efficient power transfer, and preventing slippage that can lead to decreased performance and premature wear. Here’s a detailed explanation of the benefits:

  • Slippage Prevention:
  • Belt tensioners are primarily designed to prevent slippage between the belt and the pulleys. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency. Belt tensioners apply sufficient force to keep the belt tightly engaged with the pulleys, minimizing the risk of slippage. By maintaining the appropriate tension, tensioners ensure a reliable grip between the belt and the pulleys, preventing power loss, and maintaining optimal performance.

  • Efficient Power Transmission:
  • Proper tension provided by belt tensioners is crucial for efficient power transmission in machinery. When the belt is properly tensioned, it remains securely engaged with the pulleys, allowing for efficient transfer of power. The tensioner ensures that the belt maintains the necessary grip and traction to transmit power effectively, minimizing energy losses associated with slippage. By optimizing power transmission, belt tensioners contribute to improved overall system efficiency and performance.

  • Load Handling:
  • Belt tensioners help in handling varying loads in machinery. As loads fluctuate, the tension in the belt needs to be adjusted to accommodate the changes. Belt tensioners with adjustable features allow for fine-tuning of the tension, ensuring that the belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission and prevents slippage, even when the machinery is subjected to varying loads, resulting in reliable and consistent performance.

  • Reduced Wear and Maintenance:
  • Slippage between the belt and the pulleys can cause accelerated wear on both components. Belt tensioners mitigate slippage, reducing the frictional forces that lead to excessive wear. By maintaining proper tension, tensioners distribute the load evenly across the belt, minimizing localized wear. This results in reduced belt wear, extending the lifespan of both the belt and the pulleys. Additionally, by preventing slippage, belt tensioners help reduce the need for frequent belt replacements and adjustments, resulting in reduced maintenance requirements and costs.

  • System Reliability:
  • Using belt tensioners improves the overall reliability of machinery. By preventing slippage and maintaining optimal power transmission, tensioners help ensure the consistent performance of belt-driven systems. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. Belt tensioners contribute to the overall reliability and uptime of the machinery, enhancing productivity and reducing the potential for costly downtime.

  • Noise and Vibration Reduction:
  • Slippage between the belt and the pulleys can generate noise and vibrations in machinery. Belt tensioners help minimize these issues by maintaining proper tension and preventing slippage. By ensuring a secure grip between the belt and the pulleys, tensioners reduce the likelihood of belt resonance, belt flutter, or excessive vibrations. This results in quieter operation and improved comfort for operators or users of the machinery.

In summary, using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. By maintaining proper tension, tensioners prevent slippage, ensure efficient power transfer, handle varying loads, reduce wear and maintenance needs, enhance system reliability, and minimize noise and vibrations. Incorporating belt tensioners into machinery design helps maximize performance, extend component lifespan, and ensure reliable operation in various industrial applications.

belt tensioner

How do innovations and advancements in belt tensioner technology impact their use?

Innovations and advancements in belt tensioner technology have a significant impact on their use, enhancing performance, reliability, and versatility. These advancements introduce new features, improve functionality, and address specific challenges associated with belt-driven systems. Here’s a detailed explanation of how innovations and advancements in belt tensioner technology impact their use:

  • Improved Tensioning Mechanisms:
  • New tensioning mechanisms and designs have been developed to provide more precise and efficient tension control. Innovations such as automatic tensioners or self-adjusting tensioners utilize advanced mechanisms that can continuously monitor and adjust the tension in real-time. This improves the overall performance and reliability of belt-driven systems, as the tension can be accurately maintained even under varying loads and operating conditions.

  • Enhanced Durability:
  • Advancements in materials and manufacturing techniques have contributed to the development of more durable belt tensioners. High-strength alloys, advanced polymers, and specialized coatings are used to increase the resistance to wear, corrosion, and fatigue. These improvements extend the service life of belt tensioners, reducing the frequency of maintenance and replacement and improving the overall reliability of belt-driven systems.

  • Increased Compatibility:
  • Innovations in belt tensioner technology have led to increased compatibility with a wide range of belt drive systems. Manufacturers have developed adjustable tensioners that can accommodate different belt widths, profiles, and types. This versatility allows for easier integration and replacement of tensioners in various industrial or automotive applications, reducing the need for custom solutions and simplifying maintenance and repairs.

  • Noise and Vibration Reduction:
  • New technologies and designs have been introduced to minimize noise and vibration generated by belt tensioners. Innovative damping materials, improved bearing systems, and optimized geometries help reduce noise and vibration levels, resulting in quieter and smoother operation. This is particularly beneficial in applications where noise reduction and operator comfort are essential.

  • Advanced Monitoring and Diagnostic Capabilities:
  • Advancements in belt tensioner technology have facilitated the integration of monitoring and diagnostic capabilities. Smart tensioners equipped with sensors and connectivity features can provide real-time data on tension levels, temperature, and other operating parameters. This enables predictive maintenance, early fault detection, and optimized performance. By leveraging data-driven insights, operators can make informed decisions, improve system efficiency, and prevent unexpected failures.

  • Integration with System Controls:
  • Innovative belt tensioner technologies can be integrated with system controls and automation platforms. This allows for seamless integration into larger control systems, enabling automated tension adjustments, synchronization with other components, and coordinated operation. The integration of belt tensioners with system controls enhances system performance, efficiency, and overall productivity.

In summary, innovations and advancements in belt tensioner technology have a significant impact on their use. These advancements improve tensioning mechanisms, enhance durability, increase compatibility, reduce noise and vibration, enable advanced monitoring and diagnostics, and facilitate integration with system controls. By incorporating these innovations, belt tensioners offer improved performance, reliability, and versatility, leading to enhanced efficiency and reduced maintenance requirements in various industrial and automotive applications.

belt tensioner

Are there specific belt tensioner designs for different applications, like automotive or industrial equipment?

Yes, there are specific belt tensioner designs tailored for different applications, including automotive and industrial equipment. Manufacturers develop specialized belt tensioners to meet the unique requirements and operating conditions of various industries. Here’s a detailed explanation of specific belt tensioner designs for different applications:

  1. Automotive Belt Tensioners:
  2. Belt tensioners used in automotive applications are designed with features that address the specific needs of the automotive industry. They are typically compact, lightweight, and engineered to withstand the demanding conditions found in vehicle engines. Automotive belt tensioners often incorporate automatic tensioning mechanisms, such as spring-loaded or hydraulic designs, to provide continuous tension control and compensate for belt elongation and wear over time. They also incorporate features like torsional vibration dampers to minimize vibrations and noise. Additionally, automotive belt tensioners undergo rigorous testing to meet industry standards and ensure reliable performance in diverse driving conditions.

  3. Industrial Belt Tensioners:
  4. Industrial belt tensioners are designed to meet the requirements of heavy-duty applications in various industries, such as manufacturing, material handling, mining, and construction. These tensioners are built to withstand high loads, harsh environments, and extended operating hours. Industrial belt tensioners often feature robust construction using durable materials like cast iron or steel. They may incorporate automatic tensioning mechanisms, hydraulic systems, or eccentric designs to provide precise tension control and adaptability to changing operating conditions. Industrial belt tensioners also come in a range of sizes and configurations to accommodate different belt sizes and drive systems used in industrial machinery.

  5. Agricultural Belt Tensioners:
  6. Agricultural equipment, such as tractors, combines, and harvesters, have specific belt tensioner designs suited for the demanding conditions encountered in farming operations. Agricultural belt tensioners are designed to withstand dust, debris, and exposure to outdoor elements. They often incorporate automatic tensioning mechanisms with robust spring-loaded systems to compensate for belt wear and maintain optimal tension during extended periods of use. These tensioners are engineered to provide reliable performance in agricultural machinery, contributing to efficient power transmission and reduced maintenance requirements.

  7. HVAC and Refrigeration Belt Tensioners:
  8. Belt tensioners used in HVAC and refrigeration systems are designed to ensure reliable and efficient operation of fans, blowers, compressors, and pumps. These tensioners are typically compact and incorporate automatic tensioning mechanisms to maintain consistent belt tension under varying operating conditions. They may also include features like vibration dampening to reduce noise and enhance system performance. HVAC and refrigeration belt tensioners are engineered to meet the specific requirements of cooling and ventilation systems, contributing to energy efficiency and prolonged equipment lifespan.

  9. Specialized Belt Tensioners:
  10. There are also specialized belt tensioners designed for specific applications or industries. For example, in the woodworking industry, belt tensioners with quick-release mechanisms are used to facilitate efficient belt changes. In the textile industry, belt tensioners with precise tension control are employed to ensure proper synchronization of moving parts. Marine propulsion systems utilize belt tensioners designed for marine environments, resistant to corrosion and capable of withstanding vibration and shock. These specialized tensioners are tailored to the specific needs of their respective industries, incorporating features and materials that optimize performance and durability.

Overall, the design of belt tensioners is influenced by the unique requirements of different applications and industries. By considering factors such as load capacity, environmental conditions, tension control mechanisms, and specific industry standards, manufacturers develop belt tensioners that are well-suited for their intended applications, ensuring optimal belt performance and system reliability.

China Hot selling Engine Belt Tensioner Pulley Apv2473 1398619 for Daf Truck   axle carrierChina Hot selling Engine Belt Tensioner Pulley Apv2473 1398619 for Daf Truck   axle carrier
editor by CX 2024-03-08

China Best Sales Factory Wholesale Price Auto Accessories Car Engine Parts Alternator Belt Tensioner with Tensioner Pulley OEM 9636207480 for Lancia Phedra CZPT axle car part

Product Description

Product Description

Factory Wholesale Price Auto Accessories Car Engine Parts Alternator Belt Tensioner with Tensioner Pulley OEM 96362571 for Lancia Phedra Zeta

Water Pump for CITROEN
Water Pump for FIAT
Water Pump for LXIHU (WEST LAKE) DIS.A
Water Pump for PEUGEOT

All kinds of car water pumps can be produced for you. Welcome to your inquiry.

MIC NO.  REF&OEM NO  APPLICATION  YEAR  PHOTO
TB34PG9901 957838
CITROEN : 575161
CITROEN : 96362074
FIAT : 96362571
LXIHU (WEST LAKE) DIS.A : 96362571
PEUGEOT : 575161
PEUGEOT : 96362074
CITROEN  C4 Coupe (LA_) 2.0 16V
CITROEN  C4 I (LC_) 2.0 16V
CITROEN  C5 I (DC_) 1.8 16V (DC6FZB, DC6FZE)
CITROEN  C5 I (DC_) 2.0 16V (DCRFNC, DCRFNF)
CITROEN  C5 I Break (DE_) 1.8 16V (DE6FZB, DE6FZE)
CITROEN  C5 I Break (DE_) 2.0 16V (DERFNF, DERFNC, RERFNC)
CITROEN  C5 II (RC_) 1.8 16V (RC6FZB)
CITROEN  C8 (EA_, EB_) 2.0
CITROEN  C8 (EA_, EB_) 2.2
CITROEN  EVASION MPV (22, U6) 2.0 16V
CITROEN  JUMPY (U6U_) 2.0
CITROEN  JUMPY Box (BS_, BT_, BY_, BZ_) 2.0 i 16V
CITROEN  JUMPY Platform/Chassis (BU_, BV_, BW_, BX_) 2.0
CITROEN  XSARA (N1) 2.0 16V
CITROEN  XSARA Break (N2) 2.0 16V
CITROEN  XSARA PICASSO (N68) 1.8 16V
CITROEN  XSARA PICASSO (N68) 2.0 16V
FIAT  SCUDO Box (220_) 2.0
FIAT  SCUDO Combinato (220_) 2.0 16V
FIAT  ULYSSE (179_) 2.0 (179BXA11, 179BXA1A)
FIAT  ULYSSE (220_) 2.0 16V (220AQ5)
LXIHU (WEST LAKE) DIS.A  PHEDRA (179_) 2.0 (179AXA11, 179AXA1A)
LXIHU (WEST LAKE) DIS.A  ZETA (22_) 2.0 16V (220AQ5, 220AQ4)
PEUGEOT  206 CC (2D) 2.0 S16
PEUGEOT  206 Hatchback (2A/C) 2.0 S16
PEUGEOT  206 SW (2E/K) 2.0 16V
PEUGEOT  307 (3A/C) 2.0 16V
PEUGEOT  307 Break (3E) 2.0
PEUGEOT  307 CC (3B) 2.0 16V
PEUGEOT  307 SW (3H) 2.0 16V
PEUGEOT  406 (8B) 1.8 16V
PEUGEOT  406 (8B) 2.0 16V
PEUGEOT  406 (8B) 2.2
PEUGEOT  406 Break (8E/F) 1.8 16V
PEUGEOT  406 Break (8E/F) 2.0 16V
PEUGEOT  406 Break (8E/F) 2.2
PEUGEOT  406 Coupe (8C) 2.0 16V
PEUGEOT  406 Coupe (8C) 2.2
PEUGEOT  407 (6D_) 1.8
PEUGEOT  407 (6D_) 2.0
PEUGEOT  407 (6D_) 2.2
PEUGEOT  407 Coupe (6C_) 2.2 16V
PEUGEOT  407 SW (6E_) 1.8
PEUGEOT  407 SW (6E_) 2.0
PEUGEOT  407 SW (6E_) 2.2
PEUGEOT  607 (9D, 9U) 2.0
PEUGEOT  607 (9D, 9U) 2.2 16V
PEUGEOT  806 (221) 2.0 16V
PEUGEOT  807 (E) 2.0
PEUGEOT  807 (E) 2.2
PEUGEOT  EXPERT (224_) 2.0
2004-2007
2004-2007
2001-2004
2001-2004
2001-2004
2001-2004
2004-
2002-
2002-
2000-2002
2000-2006
2000-2006
2003-2006
2000-2005
2000-2005
2000-2005
2003-2012
2000-2006
2000-2006
2002-2011
2000-2002
2002-2571
2000-2002
2000-2007
1999-2000
2002-2007
2000-2005
2002-2005
2003-2005
2002-2005
2000-2004
2000-2004
2000-2004
2000-2004
2000-2004
2000-2004
1999-2000
2002-2004
2004-2005
2004-2005
2004-2006
2005-
2004-2005
2004-2005
2004-2005
2000-2005
2000-2005
2000-2002
2002-
2002-
2000-2006

 

Company Profile

Our Factory

Exhibition Shows

FAQ

Q1: Are you a trading company or manufacturer?
A1: We are industrial and export combination.

Q2: If there’s any quality problem, what would you do to guarantee our rights?
Q2: We seldom get complains from our customers so far. If it really happens, we’ll be responsible for that.

Q3: How long is your delivery time?
Q3: Around 30-45 days if no stock; Around 7 days when stock available.

Q4: What’s your sample policy? 
A4: Samples under $50.0 will be no charge, however the freight charge should be borne on buyer’s account.
Normal delivery time will be 4 days when stock available.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1 Year
Car Make: FOR LANCIA
Car Model: FOR ZETA
Lead time: 60-90 days
OEM service: Available
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

belt tensioner

Can you explain the benefits of using belt tensioners in preventing slippage and optimizing power transmission in machinery?

Using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. Belt tensioners play a critical role in maintaining proper tension in the belt, ensuring efficient power transfer, and preventing slippage that can lead to decreased performance and premature wear. Here’s a detailed explanation of the benefits:

  • Slippage Prevention:
  • Belt tensioners are primarily designed to prevent slippage between the belt and the pulleys. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency. Belt tensioners apply sufficient force to keep the belt tightly engaged with the pulleys, minimizing the risk of slippage. By maintaining the appropriate tension, tensioners ensure a reliable grip between the belt and the pulleys, preventing power loss, and maintaining optimal performance.

  • Efficient Power Transmission:
  • Proper tension provided by belt tensioners is crucial for efficient power transmission in machinery. When the belt is properly tensioned, it remains securely engaged with the pulleys, allowing for efficient transfer of power. The tensioner ensures that the belt maintains the necessary grip and traction to transmit power effectively, minimizing energy losses associated with slippage. By optimizing power transmission, belt tensioners contribute to improved overall system efficiency and performance.

  • Load Handling:
  • Belt tensioners help in handling varying loads in machinery. As loads fluctuate, the tension in the belt needs to be adjusted to accommodate the changes. Belt tensioners with adjustable features allow for fine-tuning of the tension, ensuring that the belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission and prevents slippage, even when the machinery is subjected to varying loads, resulting in reliable and consistent performance.

  • Reduced Wear and Maintenance:
  • Slippage between the belt and the pulleys can cause accelerated wear on both components. Belt tensioners mitigate slippage, reducing the frictional forces that lead to excessive wear. By maintaining proper tension, tensioners distribute the load evenly across the belt, minimizing localized wear. This results in reduced belt wear, extending the lifespan of both the belt and the pulleys. Additionally, by preventing slippage, belt tensioners help reduce the need for frequent belt replacements and adjustments, resulting in reduced maintenance requirements and costs.

  • System Reliability:
  • Using belt tensioners improves the overall reliability of machinery. By preventing slippage and maintaining optimal power transmission, tensioners help ensure the consistent performance of belt-driven systems. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. Belt tensioners contribute to the overall reliability and uptime of the machinery, enhancing productivity and reducing the potential for costly downtime.

  • Noise and Vibration Reduction:
  • Slippage between the belt and the pulleys can generate noise and vibrations in machinery. Belt tensioners help minimize these issues by maintaining proper tension and preventing slippage. By ensuring a secure grip between the belt and the pulleys, tensioners reduce the likelihood of belt resonance, belt flutter, or excessive vibrations. This results in quieter operation and improved comfort for operators or users of the machinery.

In summary, using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. By maintaining proper tension, tensioners prevent slippage, ensure efficient power transfer, handle varying loads, reduce wear and maintenance needs, enhance system reliability, and minimize noise and vibrations. Incorporating belt tensioners into machinery design helps maximize performance, extend component lifespan, and ensure reliable operation in various industrial applications.

belt tensioner

Can you provide examples of products or equipment that rely on belt tensioners for efficient operation?

Yes, there are numerous products and equipment that rely on belt tensioners for efficient operation. Belt tensioners play a crucial role in maintaining optimal tension in belts, ensuring proper power transmission, minimizing slippage, and extending the lifespan of belts and associated components. Here are some examples of products and equipment that commonly utilize belt tensioners:

  • Automotive Engines:
  • Belt tensioners are essential components in automotive engines. They are commonly used in the serpentine belt system, which drives various engine accessories such as the alternator, power steering pump, air conditioning compressor, and water pump. Tensioners ensure that the serpentine belt remains properly tensioned to prevent belt slippage and maintain efficient operation of these engine accessories.

  • Industrial Machinery:
  • A wide range of industrial machinery relies on belt tensioners for efficient operation. Examples include conveyor systems, packaging equipment, printing machines, textile machinery, and woodworking machinery. Belt tensioners in these applications maintain proper tension in belts that drive moving components, ensuring consistent power transmission, smooth operation, and reduced downtime due to belt-related issues.

  • Agricultural Equipment:
  • In agricultural equipment such as tractors, combines, and harvesters, belt tensioners are critical for the proper operation of belts that drive components like the fan, water pump, and various harvesting mechanisms. Tensioners help maintain optimal belt tension, preventing slippage and ensuring efficient power delivery to these vital agricultural machinery components.

  • HVAC Systems:
  • Heating, ventilation, and air conditioning (HVAC) systems rely on belt tensioners for efficient operation of the blower fans, compressors, and pumps. Belt tensioners in HVAC systems maintain the correct tension in belts, ensuring proper airflow, efficient cooling or heating, and reliable operation of the HVAC equipment.

  • Pumping Systems:
  • Pumping systems, including water pumps, fuel pumps, and hydraulic pumps, often incorporate belt tensioners to maintain the optimal tension in belts. These tensioners contribute to efficient power transmission, preventing slippage and ensuring reliable fluid transfer in various industries, such as water treatment, oil and gas, and construction.

  • Power Tools:
  • Belt-driven power tools, such as belt sanders, grinders, and lathes, rely on belt tensioners to maintain proper tension in the belts that drive the tool’s rotating components. Tensioners in power tools ensure efficient power transfer, reduce belt wear, and enhance the tool’s overall performance.

  • Exercise Equipment:
  • Many types of exercise equipment, including treadmills, stationary bikes, and rowing machines, incorporate belt tensioners to ensure smooth and efficient operation. These tensioners maintain proper tension in the belts that drive the equipment’s resistance mechanisms, allowing users to achieve desired workout intensity and providing a consistent exercise experience.

These are just a few examples of the wide range of products and equipment that rely on belt tensioners for efficient operation. Belt tensioners are used in various industries and applications where belt-driven systems are employed, ensuring reliable power transmission, minimizing belt wear, and contributing to overall system performance and longevity.

belt tensioner

Are there specific belt tensioner designs for different applications, like automotive or industrial equipment?

Yes, there are specific belt tensioner designs tailored for different applications, including automotive and industrial equipment. Manufacturers develop specialized belt tensioners to meet the unique requirements and operating conditions of various industries. Here’s a detailed explanation of specific belt tensioner designs for different applications:

  1. Automotive Belt Tensioners:
  2. Belt tensioners used in automotive applications are designed with features that address the specific needs of the automotive industry. They are typically compact, lightweight, and engineered to withstand the demanding conditions found in vehicle engines. Automotive belt tensioners often incorporate automatic tensioning mechanisms, such as spring-loaded or hydraulic designs, to provide continuous tension control and compensate for belt elongation and wear over time. They also incorporate features like torsional vibration dampers to minimize vibrations and noise. Additionally, automotive belt tensioners undergo rigorous testing to meet industry standards and ensure reliable performance in diverse driving conditions.

  3. Industrial Belt Tensioners:
  4. Industrial belt tensioners are designed to meet the requirements of heavy-duty applications in various industries, such as manufacturing, material handling, mining, and construction. These tensioners are built to withstand high loads, harsh environments, and extended operating hours. Industrial belt tensioners often feature robust construction using durable materials like cast iron or steel. They may incorporate automatic tensioning mechanisms, hydraulic systems, or eccentric designs to provide precise tension control and adaptability to changing operating conditions. Industrial belt tensioners also come in a range of sizes and configurations to accommodate different belt sizes and drive systems used in industrial machinery.

  5. Agricultural Belt Tensioners:
  6. Agricultural equipment, such as tractors, combines, and harvesters, have specific belt tensioner designs suited for the demanding conditions encountered in farming operations. Agricultural belt tensioners are designed to withstand dust, debris, and exposure to outdoor elements. They often incorporate automatic tensioning mechanisms with robust spring-loaded systems to compensate for belt wear and maintain optimal tension during extended periods of use. These tensioners are engineered to provide reliable performance in agricultural machinery, contributing to efficient power transmission and reduced maintenance requirements.

  7. HVAC and Refrigeration Belt Tensioners:
  8. Belt tensioners used in HVAC and refrigeration systems are designed to ensure reliable and efficient operation of fans, blowers, compressors, and pumps. These tensioners are typically compact and incorporate automatic tensioning mechanisms to maintain consistent belt tension under varying operating conditions. They may also include features like vibration dampening to reduce noise and enhance system performance. HVAC and refrigeration belt tensioners are engineered to meet the specific requirements of cooling and ventilation systems, contributing to energy efficiency and prolonged equipment lifespan.

  9. Specialized Belt Tensioners:
  10. There are also specialized belt tensioners designed for specific applications or industries. For example, in the woodworking industry, belt tensioners with quick-release mechanisms are used to facilitate efficient belt changes. In the textile industry, belt tensioners with precise tension control are employed to ensure proper synchronization of moving parts. Marine propulsion systems utilize belt tensioners designed for marine environments, resistant to corrosion and capable of withstanding vibration and shock. These specialized tensioners are tailored to the specific needs of their respective industries, incorporating features and materials that optimize performance and durability.

Overall, the design of belt tensioners is influenced by the unique requirements of different applications and industries. By considering factors such as load capacity, environmental conditions, tension control mechanisms, and specific industry standards, manufacturers develop belt tensioners that are well-suited for their intended applications, ensuring optimal belt performance and system reliability.

China Best Sales Factory Wholesale Price Auto Accessories Car Engine Parts Alternator Belt Tensioner with Tensioner Pulley OEM 9636207480 for Lancia Phedra CZPT   axle car partChina Best Sales Factory Wholesale Price Auto Accessories Car Engine Parts Alternator Belt Tensioner with Tensioner Pulley OEM 9636207480 for Lancia Phedra CZPT   axle car part
editor by CX 2024-03-02

China OEM A118111210ca Factory Price Auto Engine Spare Parts Idler Pulley Belt Tensioner for CZPT A1 A3 A5 1.6L 1.8L 2.0L axle dump

Product Description

 

Product data

Product Name

 Factory Price Auto Engine Spare Parts Idler Pulley Belt Tensioner for Chery A1 A3 A5 1.6L 1.8L 2.0L 

Car Model

  for Chery A1 A3 A5 1.6L 1.8L 2.0L 

OEM NO.

   A118111210CA

Material

Metal + Plastic

Weight

OEM Standard 

Size

OEM Standard

MOQ

1 piece if we have them in stock, 50 pieces for production.

Warranty

12 Months

Delivery Time

7-25 Days

Package

Neutral, Perfectrail or Customized Packing is acceptable

Neutral packing. Neutral box and brown cartons. Pallet is also available.

Our Advantage

1. The same size as original one.

2. Lower MOQ is acceptable with more models.
3. Fast delivery.
4. Laser Mark for free.
5.Pallet with Film for free.

 

Company Profile

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Type: Bev
Samples:
US$ 6.3/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

Can you explain the benefits of using belt tensioners in preventing slippage and optimizing power transmission in machinery?

Using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. Belt tensioners play a critical role in maintaining proper tension in the belt, ensuring efficient power transfer, and preventing slippage that can lead to decreased performance and premature wear. Here’s a detailed explanation of the benefits:

  • Slippage Prevention:
  • Belt tensioners are primarily designed to prevent slippage between the belt and the pulleys. Slippage occurs when the belt loses traction with the pulleys, resulting in a loss of power transmission efficiency. Belt tensioners apply sufficient force to keep the belt tightly engaged with the pulleys, minimizing the risk of slippage. By maintaining the appropriate tension, tensioners ensure a reliable grip between the belt and the pulleys, preventing power loss, and maintaining optimal performance.

  • Efficient Power Transmission:
  • Proper tension provided by belt tensioners is crucial for efficient power transmission in machinery. When the belt is properly tensioned, it remains securely engaged with the pulleys, allowing for efficient transfer of power. The tensioner ensures that the belt maintains the necessary grip and traction to transmit power effectively, minimizing energy losses associated with slippage. By optimizing power transmission, belt tensioners contribute to improved overall system efficiency and performance.

  • Load Handling:
  • Belt tensioners help in handling varying loads in machinery. As loads fluctuate, the tension in the belt needs to be adjusted to accommodate the changes. Belt tensioners with adjustable features allow for fine-tuning of the tension, ensuring that the belt remains properly tensioned under different load conditions. This flexibility helps optimize power transmission and prevents slippage, even when the machinery is subjected to varying loads, resulting in reliable and consistent performance.

  • Reduced Wear and Maintenance:
  • Slippage between the belt and the pulleys can cause accelerated wear on both components. Belt tensioners mitigate slippage, reducing the frictional forces that lead to excessive wear. By maintaining proper tension, tensioners distribute the load evenly across the belt, minimizing localized wear. This results in reduced belt wear, extending the lifespan of both the belt and the pulleys. Additionally, by preventing slippage, belt tensioners help reduce the need for frequent belt replacements and adjustments, resulting in reduced maintenance requirements and costs.

  • System Reliability:
  • Using belt tensioners improves the overall reliability of machinery. By preventing slippage and maintaining optimal power transmission, tensioners help ensure the consistent performance of belt-driven systems. This reduces the risk of unexpected power losses, interruptions in operation, or damage to other system components. Belt tensioners contribute to the overall reliability and uptime of the machinery, enhancing productivity and reducing the potential for costly downtime.

  • Noise and Vibration Reduction:
  • Slippage between the belt and the pulleys can generate noise and vibrations in machinery. Belt tensioners help minimize these issues by maintaining proper tension and preventing slippage. By ensuring a secure grip between the belt and the pulleys, tensioners reduce the likelihood of belt resonance, belt flutter, or excessive vibrations. This results in quieter operation and improved comfort for operators or users of the machinery.

In summary, using belt tensioners in machinery offers several benefits in preventing slippage and optimizing power transmission. By maintaining proper tension, tensioners prevent slippage, ensure efficient power transfer, handle varying loads, reduce wear and maintenance needs, enhance system reliability, and minimize noise and vibrations. Incorporating belt tensioners into machinery design helps maximize performance, extend component lifespan, and ensure reliable operation in various industrial applications.

belt tensioner

How do belt tensioners contribute to reducing vibrations and noise in machinery?

Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here’s a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:

  • Stabilizing Belt Movement:
  • Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.

  • Minimizing Belt Resonance:
  • Belt resonance refers to the phenomenon where a belt’s natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.

  • Damping Vibrations:
  • Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner’s design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.

  • Reducing Belt Slippage:
  • Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.

  • Minimizing Belt Flapping:
  • When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.

  • Promoting Stable Rotational Motion:
  • A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.

In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.

belt tensioner

What industries and machinery commonly use belt tensioners for optimal belt performance?

Various industries and machinery rely on belt tensioners to achieve optimal belt performance. Here’s a detailed explanation of the industries and machinery that commonly use belt tensioners:

  1. Automotive Industry:
  2. The automotive industry extensively utilizes belt tensioners in vehicles for various applications. Belt tensioners are commonly found in the engine accessory drive system, where they maintain the proper tension in the serpentine or V-belts that power components such as the alternator, air conditioning compressor, power steering pump, and water pump. Belt tensioners ensure efficient power transmission, reduce belt slippage, and contribute to the overall reliability and performance of automotive engines.

  3. Industrial Machinery:
  4. A wide range of industrial machinery relies on belt tensioners for optimal belt performance. Industries such as manufacturing, food processing, packaging, printing, and material handling use belt-driven systems for conveyor belts, production lines, pumps, compressors, and other equipment. Belt tensioners help maintain the proper tension in these applications, ensuring smooth operation, efficient power transmission, and minimizing downtime due to belt slippage or failure.

  5. Power Generation:
  6. In the power generation sector, belt tensioners are commonly used in applications such as generators, turbines, and auxiliary equipment. These systems often utilize belts to transfer power between components, and the tensioners play a crucial role in maintaining proper belt tension. Belt tensioners help optimize power transmission efficiency, reduce vibrations, and enhance the overall reliability of the power generation equipment.

  7. Agricultural Equipment:
  8. Agricultural machinery, including tractors, combines, and other farming equipment, often rely on belt-driven systems for various operations. Belt tensioners are utilized to maintain the tension in belts powering agricultural implements, such as harvesters, balers, and grain conveyors. By ensuring optimal tension, belt tensioners contribute to the efficient operation of agricultural equipment, improving productivity and reducing maintenance requirements.

  9. Construction and Mining:
  10. Construction and mining industries commonly employ belt-driven systems in equipment such as excavators, loaders, crushers, and conveyor systems. Belt tensioners are used to maintain the proper tension in belts powering these machines, ensuring reliable and efficient operation in demanding environments. Belt tensioners help prevent belt slippage, reduce downtime, and contribute to the longevity of the equipment.

  11. HVAC and Refrigeration:
  12. The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on belt-driven systems for various applications, including fans, blowers, compressors, and pumps. Belt tensioners are critical in maintaining the proper tension in these systems, ensuring efficient power transmission and reducing belt-related issues such as slippage or premature wear. Belt tensioners contribute to the overall performance and reliability of HVAC and refrigeration equipment.

In addition to the industries mentioned above, belt tensioners are also utilized in a wide range of other machinery and equipment, including woodworking machinery, textile machinery, marine propulsion systems, and more. The versatility and benefits of belt tensioners make them a valuable component for achieving optimal belt performance in numerous industrial and mechanical applications.

China OEM A118111210ca Factory Price Auto Engine Spare Parts Idler Pulley Belt Tensioner for CZPT A1 A3 A5 1.6L 1.8L 2.0L   axle dumpChina OEM A118111210ca Factory Price Auto Engine Spare Parts Idler Pulley Belt Tensioner for CZPT A1 A3 A5 1.6L 1.8L 2.0L   axle dump
editor by CX 2024-02-28

China Standard High Quality Engine Parts Belt Tensioner Pulley OEM 17540-63r40 a wheel and axle

Product Description

High Quality Engine Parts Belt Tensioner Pulley OEM 17540-63R40

 

Product Description

Product Name

High Quality Engine Parts Belt Tensioner Pulley OEM 17540-63R40
Certification ISO/TS16949:2009

OE Number

17540-63R40
Car Fitment SUZUK

Quality guarantee

12 months

Leading time

30 days

MOQ

50pcs

 

Why Choose Us

1.Reply your enquiry in 24 working hours,any time you can contact me.

2.OEM, buyer design, buyer label services provided.
3.Exclusive and unique solution can be provide to our customer by our welltrained 
   and professional engineers and staffs.
4.we can provide free sample for your check
5.we have the certification of ISO 9001
6.Special discount and protection of sales area provided to our distributor.
7.timely delivery
8.Good after-sale service
9.Small MOQ is acceptable

 

Our Service

1.Your inquiry related to our products or prices will be replied in 24 hours. 

2.Protection of your sales area, ideas of design and all your private information. 
3.Best quality and competitive price.

 

Packaging & Delivery

1.Packaging Details:Can be customized

2. Delivery Detail:About 3-5 days and based on your requirements.

 

FAQ

Q1.Are you a Manufacturer or a Trading Company?

A: We are a professional manufacturer specializing in filters for several years.
     Factory belong to us,100% industrial corporation,not cooperating partner.It would be our big honor,if you can        come to visit us.

Q2.What products can you supply?
A: As a manufacturer, Gpaiplus Company with more than 10 years experience.
    We produce a complete range of oil filters, air filters, cabin air filters and fuel filters.If you have your own brand    or willing to start one, we would be happy to do OEM for you.

Q3: How is the quality of the filters?How do you guarantee the after-sale service?
A: Strict control before shipment.
      If any problems caused by the product itself, we will supply you the new replaced ones ASAP.

Q4. Can I get some samples? How could I pay the sample charge?
A: It depents on the sample costs, but the freight might be bared by our customers.
    We accept the sample payment via Western Union,Money Gram or T/T.

Q5. What is the payment terms?
A: Our paymnet terms: 30% deposit before production, 70%balance before shipment.

Q6. How long is your Delivery Time ?
A: If there is stock, the delivery time is about 3-5 working days after getting the payment.
     If no stock,30-45 working days according to the order.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Standard
Type: Tensioner Bearing
Material: Steel
Certification: ISO
Condition: New
Application Brand: Suzuk
Customization:
Available

|

Customized Request

belt tensioner

What is the role of belt tensioner materials and coatings in performance and longevity?

Belt tensioner materials and coatings play a crucial role in the performance and longevity of belt tensioners. The choice of materials and coatings directly impacts the tensioner’s ability to withstand the forces and loads encountered in belt-driven systems, resist wear and corrosion, and maintain consistent performance over time. Here’s a detailed explanation of the role of belt tensioner materials and coatings in performance and longevity:

  • Strength and Durability:
  • The materials used in belt tensioners need to possess high strength and durability to withstand the mechanical stresses and loads imposed on them. Tensioner components are subjected to continuous movement and contact with the belt, which can lead to wear, fatigue, and potential failure. High-strength materials, such as hardened steels or alloys, are commonly used to ensure the tensioner’s structural integrity and longevity.

  • Wear Resistance:
  • Belt tensioners are exposed to friction and wear as they come into contact with the belt during operation. Materials with excellent wear resistance properties, such as hardened surfaces or wear-resistant coatings, are employed to minimize the wear rate and extend the tensioner’s lifespan. These materials and coatings help maintain optimal contact between the tensioner and the belt, reducing the risk of belt slippage and premature failure.

  • Corrosion Resistance:
  • In certain environments, belt tensioners may be exposed to corrosive substances, moisture, or contaminants, which can lead to corrosion and degradation of the tensioner components. Corrosion-resistant materials, such as stainless steel or corrosion-resistant alloys, are often utilized to protect the tensioner against corrosive elements. Additionally, coatings like zinc plating or other protective finishes can be applied to enhance the tensioner’s corrosion resistance.

  • Friction Reduction:
  • Reducing friction between the tensioner and the belt is essential for minimizing wear and maintaining consistent tension. Materials or coatings with low friction coefficients can help reduce the frictional forces and energy losses associated with the tensioner’s operation. By reducing friction, these materials and coatings contribute to improved efficiency, reduced heat generation, and increased longevity of the tensioner and the entire belt-driven system.

  • Temperature Stability:
  • Belt tensioners are exposed to a wide range of operating temperatures, including both high and low extremes. Materials with good temperature stability and resistance to thermal degradation are essential for reliable tensioner performance. Heat-resistant alloys, high-temperature plastics, or thermal barrier coatings may be utilized to ensure that the tensioner maintains its mechanical properties and functionality under elevated temperatures.

  • Lubrication Enhancement:
  • Some tensioner materials or coatings are designed to enhance lubrication and reduce friction between moving parts. They may have self-lubricating properties or be compatible with specific lubricants used in the belt-driven system. These materials and coatings help reduce wear, heat generation, and the need for external lubrication, contributing to improved performance and extended longevity of the tensioner.

  • Noise and Vibration Damping:
  • Belt tensioners can generate noise and vibration during operation, which can affect the comfort and performance of the belt-driven system. Certain materials or coatings can help dampen vibrations and reduce noise levels, improving the overall system’s performance and minimizing potential issues associated with excessive noise or vibrations.

In summary, the choice of belt tensioner materials and coatings is critical for ensuring optimal performance and longevity. Materials with high strength and durability, wear resistance, corrosion resistance, friction reduction, temperature stability, lubrication enhancement, and noise/vibration damping properties contribute to the tensioner’s ability to withstand the operational demands of belt-driven systems. By selecting appropriate materials and coatings, manufacturers can enhance the reliability, durability, and overall efficiency of belt tensioners, leading to extended service life and improved performance of the belt-driven systems they are used in.

belt tensioner

How do belt tensioners contribute to reducing vibrations and noise in machinery?

Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here’s a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:

  • Stabilizing Belt Movement:
  • Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.

  • Minimizing Belt Resonance:
  • Belt resonance refers to the phenomenon where a belt’s natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.

  • Damping Vibrations:
  • Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner’s design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.

  • Reducing Belt Slippage:
  • Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.

  • Minimizing Belt Flapping:
  • When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.

  • Promoting Stable Rotational Motion:
  • A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.

In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.

belt tensioner

What is a belt tensioner, and what role does it play in mechanical systems?

A belt tensioner is a mechanical component used in belt drive systems to maintain proper tension in the belt. It plays a crucial role in ensuring efficient power transmission, preventing belt slippage, and extending the lifespan of the belt and other related components. Here’s a detailed explanation of the belt tensioner and its role in mechanical systems:

A belt tensioner is typically a pulley or idler mechanism that is designed to apply force on the belt to maintain the desired tension. It is usually mounted on an adjustable arm or bracket, allowing for easy tension adjustment. The tensioner is positioned in such a way that it applies pressure to the belt on the slack side, which is the portion of the belt between the driving pulley and the driven pulley.

The primary role of a belt tensioner is to compensate for any stretching or elongation of the belt that may occur over time due to wear, temperature changes, or other factors. By maintaining the proper tension in the belt, the tensioner helps to prevent belt slippage, which can lead to a loss of power transmission efficiency and potential damage to the belt and pulleys.

In addition to maintaining tension, a belt tensioner also helps to dampen vibrations and reduce noise in the belt drive system. It acts as a shock absorber, absorbing and dissipating vibrations and preventing excessive belt flutter or oscillation. This contributes to smoother operation and improved system reliability.

Furthermore, a belt tensioner assists in prolonging the lifespan of the belt and other components in the drive system. Adequate tension reduces the risk of premature wear and fatigue on the belt, pulleys, and bearings. It also helps to distribute the load evenly across the belt, minimizing localized stress and ensuring optimal power transmission.

When installing a belt tensioner, it’s important to follow the manufacturer’s guidelines and recommendations. Proper positioning, alignment, and adjustment of the tensioner are essential to achieve the desired tension and ensure the efficient operation of the belt drive system.

In summary, a belt tensioner is a critical component in mechanical systems utilizing belt drives. It maintains the appropriate tension in the belt, prevents slippage, reduces vibrations and noise, and contributes to the longevity and reliability of the system. By incorporating a belt tensioner, engineers and designers can optimize the performance and efficiency of belt-driven machinery and equipment.

China Standard High Quality Engine Parts Belt Tensioner Pulley OEM 17540-63r40   a wheel and axleChina Standard High Quality Engine Parts Belt Tensioner Pulley OEM 17540-63r40   a wheel and axle
editor by CX 2024-02-23

China OEM Engine Parts Crankshaft Pulley K38 K50 (3069778) manufacturer

Product Description

We are specialized in DCEC, CZPT original parts, after-market parts, Deepsea controller, AVR, Fleetguard Filter, Holset Turbocharger and so on. welcome to inquire.

Main Information:

Item Name crankshaft pulley
Brand CCEC
Engine Model K38/k50
Engine Type Diesel Engine
P/N 3069778
MOQ 1pc
Sample Day 1-7days
Delivery Day 1-7days
Packing CCEC Package
Advantage CCEC Genuine Parts

Engine Crankshaft Pulley Picture Showing:

More Engine Parts List:

More Engine Parts 
For 4BT 6BT 6CT ISD ISL L8.9 N855 NH M11 K19 K38 ISB ISC QSB QSC QSM etc
Cylinder Block
cylinder block bushing cylider liner kit expansion plug piston cooling nozzle
Cylinder Head
cylinder head intake valve exhaust vavle valve insert valve spring
valve spring valve collet valve rotator valve stem guide cylinder head gasket
Crankshaft
Crankshaft main bearing thrust bearing oil seal vibration damper
Con Rod and Piston
connectng rod piston piston pin piston ring con rod bearing
Camshaft
camshaft camshaft gear camshaft bushing woodruff key thrust bearing
Rocker Lever
rocker lever rocker lever shaf rocker lever cover rocker lever housing rker lever housing gasket
Injector
injector injector cup injector seal injector adapter barrel and plunger
Water Pump
water pump sea water pump water pump shaft water pump impeller water pump body
water pump seal ball bearing water pump pulley water pump belt plain hose
Fuel Pump
fuel pump assy acutator gear fuel pump fuel shutoff valve fuel pump drive
Oil Pump
oil pump oil pump gear STC valve oil pump gasket  
Alternator
Alternator alternator belt alternator pulley alternator support  
Starting Motor
starting motor magnetic switch ground wire    
Turbocharger
turbocharger turbocharger housing tube lub oil supply turbocharger gasket turbocharger repair kit
Fan Hub
fan hub engine fan fan belt idler pulley fan pulley
Manifold
intake manifold exhaust manifold exhaust blbow exhaust outle connection  
Filter
oil filter fuel filter water filter air filter  
Flywheel
In-Frame Kits 
Cylinder Kit Main Bearing Set Head Gasket Set Rod Bearings Oil Pan Gasket
For 4BT Inframe Kit 3.9L
For 6BT Inframe Kit 5.9L
For 6C8.3 Inframe Kit 8.3L
For N855 Inframe Kit NT Premium
OVERHAUL KITS
Cylinder Kits Rod Bearings  Main Bearings Overhaul Gasket Set  
For 4BT Overhaul Kit 3.9L
For 6BT Overhaul Kit 5.9L
For 6C8.3 Overhaul Kit 8.3L
For N855 Overhaul Kit NT Premium
Long Block
ENGINE BLOCK, CRANKSHAFT, CON ROD,CAMSHAFT, MAIN BEARING, CON ROD BEARING, PISTON, PISTON RING SET, PISTIN PIN, LINER KIT, TAPPET, CYLINDER HEAD KIT, CYLINDER HEAD GASKET.
For 4BT Long Block 3.9L
For 6BT Long Block 5.9L
For 6C8.3 Long Block 8.3L
Short Block
ENGINE BLOCK, CRANKSHAFT, CON ROD, MAIN BEARING, CON ROD BEARING, PISTON, PISTON RING SET, PISTIN PIN, LINER KIT.
For 4BT Short Block 3.9L
For 6BT Short Block 5.9L
For 6C8.3 Short Block 8.3L

Reminder: 
We can’t list all of them because  of thousands of engine parts, .Pls send us the part No to quote If you don’t find what you want here, We are sure we can satisfy you with our full range products.

CCEC Models: Enjoying the international quality and exceeding value with the local price.

NT855 series engine model spectrum
Generator Industrial Euipment Marine Equipment
NT855-GA NTC-290 NTA855-C400S10 NTAA855-C400S20 NTA855-P500
NTA855-G1 NT855-C250 NT855-C280-T180 NTAA855-C360S20 NTA855-D(M)
NTA855-G1A NT855-C280 NT855-C310 NTAA855-C280S20 NTA855-M350
NTA855-G1B NTA855-C360 NT855-L290 NTA855-P400 NTA855-M400
NTA855-G2 NTA855-C400 NTA855-L360 NT855-P270 NTA855-G2M
NTA855-G2A NTAA855-C250S20 NTA855-L400 NTA855-P360 NTA855-G1M
NTA855-G3 NTA855-C250S10 NTA855-C335 NT855-P300 NTA855-M300
NTA855-G4 NTA855-C310S10 NT855-C280S10 NTA855-P470 NTA855-M
NTAA855-G7 NTA855-C335S10 NTA855-C450 NT855-P400 NT855-M270
NTAA855-G7A NTA855-C360S10 NT855-C280H NTA855-P450 NT855-M240
KTA19 series engine model spectrum
Generator Industrial Euipment Marine Equipment
KTA19-G2 KT19-C450 KTA19-L600S10 KTA19-P750 KTA19-D(M)
KTA19-G3 KTA19-C525 QSK19-C600 KTA19-C450S10 KTA19-M500
KTA19-G4 KTA19-C525S10 QSKTAA19-C755 KTA19-P680 KTA19-M470
KTAA19-G5 KTA19-C600S10 QSKTAA19-C700 QSKTAA19-G3 KTA19-M3
KTAA19-G6 KTTA19-C700 KTA19-P525   KTA19-M4
KTAA19-G6A QSK19-C760 KTA19-P500   KTA19-M550
KTAA19-G7 KTA19-C600 KTA19-P600   KT19-M425
KTA19-G8 KTA19-L600 KTA19-P700   K19-DM
KTA38 series engine model spectrum
Generator Industrial Euipment Marine Equipment
KT38-G KTA38-G5 KTA38-P1300 KTA38-C1050 KTA38-M2
KT38-GA KTA38-G9 KT38-P1000 KTA38-C1200 KTA38-M
KTA38-G2   KTA38-P1200 KTA38-C1200 KT38-M
KTA38-G2B   KTA38-P1400 KTA38-C1400 KTA38-D(M)
KTA38-G2A   KT38-P780 KT38-P830 KTA38-M950
KTA38-G4   KT38-P780 KTA38-P980  
KTA50 series engine model spectrum
Generator Industrial Euipment Marine Equipment
KTA50-G3 KTA50-GS8 KTA50-C1600   KTA50-M2
KTA50-G8 KTA50-G9 KTTA50-C2000    
MTA11 series engine model spectrum
Generator Industrial Euipment
MTA11-G2 M11-C300 M11-C290 M11-C300S10 M11-C380E20
MTA11-G2A M11-C350 M11-C350S20 M11-C380 M11-C225
MTAA11-G3 M11-C350E20 M11-C330S10 M11-C350S10 M11-C225H

MOQ: 1 Set
Application: Generator, Turck, Ship, Industry
Delivery Time: 1-7 Days
Engine Type: Diesel
Engine Model: 4bt/6b/6CT/ Nt855/ M11/ K19/ Kt38/K50
Transport Package: Carton Packing
Customization:
Available

|

Customized Request

pulley

Overview of Different Types of Pulleys

A pulley is a wheel mounted on a shaft or shaft. Its purpose is to facilitate the movement or change of direction of the cable or taut rope, and to transmit power between the cable and the shaft. Pulleys are typically used for lifting, winding or forklift applications. If you are building your own pulley system, the following design and installation considerations should be followed. This article will give you an overview of the different types of pulleys.

Pulley System Mechanics

There are many different ways to utilize the mechanism of the pulley system. The most basic pulley system consists of a fixed wheel and a support frame. Both components are connected by ropes or cables used to support the load. A pulley system is effective when the force required to lift the load is less than the weight of the object being lifted.
One way to use a pulley system is to suspend a block with a mass of 0.80 kg on a fixed pulley. Then another person can hang a bucket weighing up to 40kg. The weight of the bucket is transferred to the fixed pulley. The rope is attached to the pulley by a loop or sling. The rope will spin and pull on the barrel or block.
The pulley system is also an important tool for lifting heavy objects. Pulleys are often used in construction equipment to make lifting heavy objects easier. Gun tackles, yard tackles, and stationary tackle systems are common examples of these devices. They use the mechanical advantage of the design to guide the force that lifts the object. If you want to learn more about pulley systems, visit Vedantu. This website will provide you with a full description of the mechanism and its application.

Types of pulleys

Many different types of pulleys are used to lift heavy objects. They change the direction of the force and are an integral part of the cable system. Therefore, pulleys can move large and heavy objects more easily. However, before buying a pulley, you should have an idea of ​​the benefits it brings. Below are some of the most common uses for pulleys.
Conical Pulley: Consists of several small conical pulleys connected to each other. The larger base of one pulley is used to guide the force. Round pulleys are used in the same way as step pulleys. They are widely used in industry and can be purchased at any hardware store. Pulleys are a huge investment, and the benefits they provide far outweigh the cost.
Movable Pulls: These are similar to their names, but work by allowing objects to move with the pull. Their movable parts are attached to the object to be lifted. They are also ideal for lifting heavy loads and can be found in utility elevators and construction cranes. They are also used in many other industries. They can also be made of wood, plastic or metal. The type of pulley you use depends on its intended use.

Mechanical Advantages of Pulley Systems

A pulley system is a simple machine that reduces the effort required to lift heavy loads. This mechanical advantage is proportional to the number of loops. For example, if you have a single rope loop, you must apply equal force to lift the weight. When you add another rope loop, you can lift heavier weights just by applying the same force. Therefore, a pulley system is an excellent way to use gravity to your advantage.
Mechanical advantage is a measure of the effectiveness of a pulley system. This ratio of force to work is called the mechanical advantage. In other words, if the rope system has a large mechanical advantage, it means that it requires less force to lift heavier loads. This advantage is usually measured in kilograms and is the same for all pulley systems. In general, the greater the mechanical advantage, the less effort is required to lift the load.
The mechanical advantage of a pulley system is that a single movable pulley requires half the force to lift an object than a single fixed pulley. Assuming frictionless bearings, the MA of a single pulley system is 2, similar to the MA of a single lever. A single pulley travels twice as much as it takes to move heavy objects manually.
pulley

Considerations when designing and installing a pulley system

The capacity of the pulley depends on the type and diameter of the cable. Besides its diameter, its sheath should also support it well. The basic function of the pulley is also important. However, most people tend to ignore the pulley selection process, resulting in ineffective load-pull capabilities. To avoid such problems, different parameters must be carefully considered during design and installation.
During the design and installation of the pulley system, the ratio of the cable diameter to the largest pulley diameter must be considered. Those who work in the industrial sector will have an idea of ​​this ratio. The greater the D:d ratio, the greater the capacity of the cable to withstand the load. The best way to ensure secure design is to take the right information and use it to design a system that is both robust and secure.
When designing a pulley system, it is important to remember that the pulley needs to have enough power to operate safely. In addition to horsepower, the belt should have sufficient elongation to absorb shock loads. If the elongation of the belt is very small, it is very likely that the teeth will be sheared or broken, causing serious damage to the system. Extensive belt sag should be compensated for by offsetting the driven pulley. Finally, the frame supporting the pulley should be rigid. Otherwise, the non-rigid frame will cause center distance and tooth skipping changes.

Add more pulleys to the system

Adding more pulleys to the spool might have some effect. The friction between the rope and the pulley increases with the number of pulleys, which in practice limits the number of spools. The best solution is to combine the pulleys into one housing. If the load is small enough, adding a few pulleys probably won’t make a difference.
Using multiple pulleys allows a single load to be lifted with half the force required. The longer the rope, the greater the mechanical advantage. In fact, a spool can withstand a load of 100 N. Additionally, adding more pulleys quadrupled the mechanical advantage. In this case, a single 100 N load would require a force of 25 Newtons.
When the rope is used, it stretches as the weight of the object increases. This will make the rope longer, increasing its length and increasing the distance over which the load can be lifted. Eventually, the rope will break and the lifted object will fall. Then you will have to buy a new rope. It may seem like an expensive proposition, but it pays off in the long run.

cast iron pulley

Cast iron pulleys are the most popular choice among industrial users. They are made of solid cast iron and usually cost very little. Their rims are held in place by a mesh that extends from a central boss. They also have spokes and arms that hold them in place. These pulleys are ideal for a variety of applications including fan belts, compressors and conveyors.
V-groove drive pulleys are ideal for general purpose pulleys. It has an inner diameter of one inch and is commonly used in feeders and ventilation curtain systems. Its steel straps prevent rust and ensure it meets or exceeds industry standards. 3-1/2″ cast iron pulleys are also available. In addition to the V-groove drive pulley, there are similar pulleys for power transmission. The V-groove drive pulley is powder coated for added durability.
The cross section of the arm is elliptical, with the long axis twice as long as the short axis. The radius of the arm is equal to the diameter of the pulley. The thickness of the arm is a key factor to consider when purchasing a pulley. If you’re not sure which material you need, you can always consider wooden or steel pulleys. They are lighter and have a higher coefficient of friction than metal pulleys.
pulley

timing pulley

Plastic timing pulleys have many advantages over steel timing pulleys. On the one hand, they are lightweight and corrosion resistant, making them ideal for applications that do not require high torque and tensile strength. Another benefit is their resistance to high temperatures. Plastic timing pulleys are ideal for applications involving flammable gases, solvents or particles. They can last for many years. For more information on the different types of plastic timing pulleys.
Vertical shaft drives require flanged timing pulleys. For large span drives, at least one of these pulleys must be flanged. The flange provides a secure connection to the shaft and prevents ratcheting of the timing belt. Finally, HTD timing belt teeth prevent timing belt ratcheting. These teeth need a large enough space to be seated. However, they can also cause a backlash. These pulleys are not suitable for applications where positional accuracy is critical.
Timing belt systems are designed to avoid such problems. The drive shaft and the driven shaft are aligned with each other. The pulleys are located on different planes and are connected by pitch lines. The pitch line of the timing pulley coincides with the pitch line of the belt. These pulleys are also easier to implement and maintain. It is better to use a synchronous system because the resulting gear system emits less noise than other systems.

China OEM Engine Parts Crankshaft Pulley K38 K50 (3069778)   manufacturer China OEM Engine Parts Crankshaft Pulley K38 K50 (3069778)   manufacturer
editor by CX